data_global _journal_name_full CrystEngComm _journal_coden_cambridge 1350 #TrackingRef '762412_PhBrF3_270K.cif' _publ_contact_author_name 'Dr Michael R. Probert' _publ_contact_author_address ; Department of Chemistry Durham University Durham DH1 3LE UK ; _publ_contact_author_phone '+44 191 3742004' _publ_contact_author_fax '+44 191 3844737' _publ_contact_author_email m.r.probert@durham.ac.uk _publ_author_address ; Department of Chemistry Durham University Durham DH1 3LE UK ; _publ_section_title ; Two solid state phases of 1-bromo-2,4,6-trifluorobenzene, crystallised under non-ambient conditions ; _publ_section_abstract ; PhBrF3, a liquid under ambient conditions, has been crystallised via two different methods; resulting in the formation of non identical solid state phases with very similar packing efficiencies, both of which are directed by classically weak intermolecular halogen-halogen interactions. ; loop_ _publ_author_name 'Michael R. Probert' 'Yiu H.P. Chung' 'Judith A.K. Howard' #========================================================================== data_270ki_ii_pc _database_code_depnum_ccdc_archive 'CCDC 762412' #TrackingRef '762412_PhBrF3_270K.cif' _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1-bromo-2,4,6-trifluorobenzene ; _chemical_name_common 1-bromo-2,4,6-trifluorobenzene _chemical_melting_point 276.2 _chemical_formula_moiety 'C6 H2 Br F3' _chemical_formula_sum 'C6 H2 Br F3' _chemical_formula_weight 210.99 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P 1 c 1' _symmetry_space_group_name_Hall 'P -2yc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x, -y, z+1/2' _cell_length_a 6.105(3) _cell_length_b 3.9567(15) _cell_length_c 13.714(7) _cell_angle_alpha 90.00 _cell_angle_beta 99.163(7) _cell_angle_gamma 90.00 _cell_volume 327.1(3) _cell_formula_units_Z 2 _cell_measurement_temperature 270(2) _cell_measurement_reflns_used 509 _cell_measurement_theta_min 3.01 _cell_measurement_theta_max 25.73 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.3 _exptl_crystal_size_mid 0.27 _exptl_crystal_size_min 0.25 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 2.141 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 200 _exptl_absorpt_coefficient_mu 6.250 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.502461 _exptl_absorpt_correction_T_max 1.0 _exptl_absorpt_process_details ; SADABS v.2.10 (Bruker,2003) was used for absorption correction. ; _exptl_special_details ; The data collection by a single \w scan each scan (10s exposure) covering 0.3\% in \w. The crystal was mounted vertically due to the crystallisation conditionsand was the limiting factor in the data coverage. Crystal to detector distance 4.54 cm. The low transmission ratio is due to the absorption correction process not fully modelling the effects of the sample environment. Additional coverage of reciprocal space would have been preferable but was not possible with the limited rotations possible with the crystallisation method. ; _diffrn_ambient_temperature 270(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART CCD 1K area detector' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean 7.9 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1901 _diffrn_reflns_av_R_equivalents 0.0503 _diffrn_reflns_av_sigmaI/netI 0.0392 _diffrn_reflns_limit_h_min -7 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 17 _diffrn_reflns_theta_min 3.01 _diffrn_reflns_theta_max 27.49 _reflns_number_total 990 _reflns_number_gt 874 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART-NT V5.0 (Bruker, 1998)' _computing_cell_refinement 'SAINT v6.45A (Bruker, 2003)' _computing_data_reduction 'SAINT v6.45A (Bruker, 2003)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ; OLEX2: a complete structure solution, refinement and analysis program. Dolomanov et al., J. Appl. Cryst. (2009). 42, 339-341 ; _computing_publication_material ; OLEX2: a complete structure solution, refinement and analysis program. Dolomanov et al., J. Appl. Cryst. (2009). 42, 339-341 ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0513P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.00(2) _refine_ls_number_reflns 990 _refine_ls_number_parameters 91 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.0405 _refine_ls_R_factor_gt 0.0341 _refine_ls_wR_factor_ref 0.0863 _refine_ls_wR_factor_gt 0.0837 _refine_ls_goodness_of_fit_ref 1.062 _refine_ls_restrained_S_all 1.061 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Br1 Br 0.40299(16) 0.03045(13) 0.25623(10) 0.0551(2) Uani 1 1 d . . . C1 C 0.6229(8) -0.1255(13) 0.3568(4) 0.0356(11) Uani 1 1 d . . . F2 F 0.8323(6) -0.3322(11) 0.2425(3) 0.0632(10) Uani 1 1 d . . . C2 C 0.8109(9) -0.2832(13) 0.3380(4) 0.0400(12) Uani 1 1 d . . . C3 C 0.9759(10) -0.3919(15) 0.4089(5) 0.0446(12) Uani 1 1 d . . . H3 H 1.1014 -0.4985 0.3932 0.054 Uiso 1 1 calc R . . F4 F 1.1089(9) -0.4423(11) 0.5782(4) 0.0733(12) Uani 1 1 d . . . C4 C 0.9486(9) -0.3367(17) 0.5065(4) 0.0463(13) Uani 1 1 d . . . C5 C 0.7678(10) -0.1842(15) 0.5311(4) 0.0472(13) Uani 1 1 d . . . H5 H 0.7528 -0.1519 0.5969 0.057 Uiso 1 1 calc R . . C6 C 0.6051(10) -0.0772(13) 0.4553(4) 0.0385(12) Uani 1 1 d . . . F6 F 0.4255(8) 0.0818(11) 0.4773(4) 0.0662(11) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Br1 0.0525(3) 0.0591(4) 0.0485(3) 0.0112(4) -0.0079(2) -0.0030(5) C1 0.043(3) 0.031(2) 0.032(2) 0.003(2) 0.002(2) -0.005(2) F2 0.069(3) 0.090(3) 0.0348(19) -0.0075(18) 0.0194(16) 0.007(2) C2 0.047(3) 0.040(3) 0.035(3) -0.004(2) 0.013(2) -0.009(2) C3 0.044(3) 0.043(3) 0.048(3) -0.009(3) 0.012(2) 0.000(3) F4 0.071(3) 0.086(3) 0.054(3) 0.011(2) -0.017(2) 0.008(2) C4 0.051(4) 0.047(3) 0.037(3) 0.007(2) -0.005(3) -0.004(3) C5 0.066(4) 0.050(3) 0.027(2) -0.004(2) 0.012(2) -0.004(3) C6 0.044(3) 0.034(3) 0.039(3) -0.005(2) 0.012(2) -0.001(2) F6 0.061(3) 0.078(3) 0.064(3) -0.009(2) 0.023(2) 0.015(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Br1 C1 1.870(5) . ? C1 C2 1.366(7) . ? C1 C6 1.386(7) . ? F2 C2 1.351(6) . ? C2 C3 1.354(8) . ? C3 C4 1.392(8) . ? C3 H3 0.9300 . ? F4 C4 1.339(7) . ? C4 C5 1.347(9) . ? C5 C6 1.385(9) . ? C5 H5 0.9300 . ? C6 F6 1.340(7) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C6 116.4(5) . . ? C2 C1 Br1 122.6(4) . . ? C6 C1 Br1 121.0(4) . . ? F2 C2 C3 118.4(5) . . ? F2 C2 C1 117.5(5) . . ? C3 C2 C1 124.1(5) . . ? C2 C3 C4 116.8(5) . . ? C2 C3 H3 121.6 . . ? C4 C3 H3 121.6 . . ? F4 C4 C5 119.2(5) . . ? F4 C4 C3 118.1(6) . . ? C5 C4 C3 122.7(5) . . ? C4 C5 C6 117.8(5) . . ? C4 C5 H5 121.1 . . ? C6 C5 H5 121.1 . . ? F6 C6 C5 119.3(5) . . ? F6 C6 C1 118.6(5) . . ? C5 C6 C1 122.1(5) . . ? _diffrn_measured_fraction_theta_max 0.992 _diffrn_reflns_theta_full 27.49 _diffrn_measured_fraction_theta_full 0.992 _refine_diff_density_max 0.623 _refine_diff_density_min -0.440 _refine_diff_density_rms 0.080 # Attachment '762413_PhBrF3_120K.cif' ############################################################# # ***Durham University Chemical Crystallography Group*** # # This structure was solved by Mike Probert ############################################################# data_120ki_ii_pc _database_code_depnum_ccdc_archive 'CCDC 762413' #TrackingRef '762413_PhBrF3_120K.cif' _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1-bromo-2,4,6-trifluorobenzene ; _chemical_name_common 1-bromo-2,4,6-trifluorobenzene _chemical_melting_point 276.7 _chemical_formula_moiety 'C6 H2 Br F3' _chemical_formula_sum 'C6 H2 Br F3' _chemical_formula_weight 210.99 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P 1 c 1' _symmetry_space_group_name_Hall 'P -2yc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' 'x, -y, z+1/2' _cell_length_a 6.038(2) _cell_length_b 3.8780(12) _cell_length_c 13.594(5) _cell_angle_alpha 90.00 _cell_angle_beta 98.474(6) _cell_angle_gamma 90.00 _cell_volume 314.83(18) _cell_formula_units_Z 2 _cell_measurement_temperature 120(2) _cell_measurement_reflns_used 857 _cell_measurement_theta_min 3.03 _cell_measurement_theta_max 30.22 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.3 _exptl_crystal_size_mid 0.27 _exptl_crystal_size_min 0.25 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 2.229 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 200 _exptl_absorpt_coefficient_mu 6.504 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.57 _exptl_absorpt_correction_T_max 1.00 _exptl_absorpt_process_details ; SADABS v.2.10 (Bruker,2003) was used for absorption correction. ; _exptl_special_details ; The data collection by a single \w scan each scan (10s exposure) covering 0.3\% in \w. The crystal was mounted vertically due to the crystallisation conditionsand was the limiting factor in the data coverage. Crystal to detector distance 4.54 cm. The low transmission ratio is due to the absorption correction process not fully modelling the effects of the sample environment. Additional coverage of reciprocal space would have been preferable but was not possible with the limited rotations possible with the crystallisation method. ; _diffrn_ambient_temperature 120(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART CCD 1K area detector' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean 7.9 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1807 _diffrn_reflns_av_R_equivalents 0.0765 _diffrn_reflns_av_sigmaI/netI 0.0467 _diffrn_reflns_limit_h_min -7 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 17 _diffrn_reflns_theta_min 3.03 _diffrn_reflns_theta_max 27.49 _reflns_number_total 946 _reflns_number_gt 935 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART-NT V5.0 (Bruker, 1998)' _computing_cell_refinement 'SAINT v6.45A (Bruker, 2003)' _computing_data_reduction 'SAINT v6.45A (Bruker, 2003)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ; OLEX2: a complete structure solution, refinement and analysis program. Dolomanov et al., J. Appl. Cryst. (2009). 42, 339-341 ; _computing_publication_material ; OLEX2: a complete structure solution, refinement and analysis program. Dolomanov et al., J. Appl. Cryst. (2009). 42, 339-341 ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0709P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.02(2) _refine_ls_number_reflns 946 _refine_ls_number_parameters 91 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.0357 _refine_ls_R_factor_gt 0.0355 _refine_ls_wR_factor_ref 0.0938 _refine_ls_wR_factor_gt 0.0935 _refine_ls_goodness_of_fit_ref 1.105 _refine_ls_restrained_S_all 1.103 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Br1 Br 0.40175(15) 0.03452(11) 0.25594(10) 0.0178(2) Uani 1 1 d . . . F6 F 0.4216(7) 0.0888(11) 0.4808(4) 0.0230(8) Uani 1 1 d . . . C6 C 0.6049(10) -0.0706(14) 0.4570(5) 0.0138(11) Uani 1 1 d . . . C2 C 0.8151(9) -0.2836(14) 0.3371(4) 0.0131(10) Uani 1 1 d . . . F2 F 0.8386(6) -0.3350(10) 0.2413(3) 0.0221(8) Uani 1 1 d . . . C1 C 0.6215(9) -0.1206(15) 0.3573(4) 0.0121(10) Uani 1 1 d . . . C4 C 0.9532(9) -0.3365(16) 0.5072(4) 0.0158(11) Uani 1 1 d . . . C3 C 0.9826(10) -0.3932(15) 0.4095(5) 0.0166(11) Uani 1 1 d . . . H3 H 1.1130 -0.5032 0.3933 0.020 Uiso 1 1 calc R . . C5 C 0.7669(9) -0.1781(15) 0.5335(4) 0.0165(11) Uani 1 1 d . . . H5 H 0.7501 -0.1440 0.6012 0.020 Uiso 1 1 calc R . . F4 F 1.1152(8) -0.4415(10) 0.5802(4) 0.0246(9) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Br1 0.0189(3) 0.0183(3) 0.0150(3) 0.0034(5) -0.00144(19) -0.0006(5) F6 0.0226(17) 0.029(2) 0.019(2) -0.0039(16) 0.0088(15) 0.0082(16) C6 0.014(3) 0.014(3) 0.014(3) -0.002(2) 0.006(2) -0.001(2) C2 0.019(2) 0.012(3) 0.008(2) -0.0004(19) 0.0041(18) -0.004(2) F2 0.0229(16) 0.033(2) 0.0119(18) -0.0037(16) 0.0076(13) 0.0030(14) C1 0.020(2) 0.008(2) 0.008(2) 0.001(2) -0.0006(19) -0.003(2) C4 0.019(2) 0.016(3) 0.011(3) 0.004(2) -0.0014(19) -0.001(2) C3 0.019(2) 0.015(3) 0.018(3) -0.001(2) 0.008(2) 0.001(2) C5 0.024(2) 0.016(3) 0.010(2) 0.001(2) 0.0048(19) -0.003(2) F4 0.026(2) 0.030(2) 0.016(2) 0.0030(16) -0.0040(17) 0.0021(16) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Br1 C1 1.866(6) . ? F6 C6 1.348(6) . ? C6 C5 1.382(9) . ? C6 C1 1.388(8) . ? C2 F2 1.346(5) . ? C2 C3 1.370(8) . ? C2 C1 1.391(7) . ? C4 F4 1.350(7) . ? C4 C5 1.374(7) . ? C4 C3 1.383(7) . ? C3 H3 0.9500 . ? C5 H5 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag F6 C6 C5 118.2(6) . . ? F6 C6 C1 118.6(6) . . ? C5 C6 C1 123.2(5) . . ? F2 C2 C3 118.5(4) . . ? F2 C2 C1 118.0(5) . . ? C3 C2 C1 123.5(5) . . ? C6 C1 C2 116.1(5) . . ? C6 C1 Br1 122.0(4) . . ? C2 C1 Br1 121.9(4) . . ? F4 C4 C5 118.4(5) . . ? F4 C4 C3 118.5(5) . . ? C5 C4 C3 123.1(5) . . ? C2 C3 C4 117.0(5) . . ? C2 C3 H3 121.5 . . ? C4 C3 H3 121.5 . . ? C4 C5 C6 117.0(5) . . ? C4 C5 H5 121.5 . . ? C6 C5 H5 121.5 . . ? _diffrn_measured_fraction_theta_max 0.990 _diffrn_reflns_theta_full 27.49 _diffrn_measured_fraction_theta_full 0.990 _refine_diff_density_max 1.190 _refine_diff_density_min -0.810 _refine_diff_density_rms 0.156 #========================================================================== data_hp_p21 _database_code_depnum_ccdc_archive 'CCDC 762414' #TrackingRef '762414_PhBrF3_HP.cif' _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1-bromo-2,4,6-trifluorobenzene ; _chemical_name_common 1-bromo-2,4,6-trifluorobenzene _chemical_melting_point 276.2 _chemical_formula_moiety 'C6 H2 Br F3' _chemical_formula_sum 'C6 H2 Br F3' _chemical_formula_weight 210.99 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' F F 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_H-M 'P 1 21 1' _symmetry_space_group_name_Hall 'P 2yb' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z' _cell_length_a 4.1069(3) _cell_length_b 5.9634(7) _cell_length_c 13.395(3) _cell_angle_alpha 90.00 _cell_angle_beta 93.949(12) _cell_angle_gamma 90.00 _cell_volume 327.29(8) _cell_formula_units_Z 2 _cell_measurement_temperature 298(2) _cell_measurement_reflns_used 509 _cell_measurement_theta_min 3.01 _cell_measurement_theta_max 25.73 _exptl_crystal_description block _exptl_crystal_colour colourless _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.12 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 2.141 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 200 _exptl_absorpt_coefficient_mu 6.248 _exptl_absorpt_correction_T_max 1.0 _exptl_absorpt_correction_T_min 0.204029 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details ; SADABS v.2.10 (Bruker,2003) was used for absorption correction. ; _exptl_special_details ; The data collection nominally covered a maximal amount of reciprocal Space, by a combination of 10 sets of \w scans each set at different \f and/or 2\q angles and each scan (30s exposure) covering 0.3\% in \w. Crystal to detector distance 7.00 cm. Static masking files were used to elimiate areas of the detector obscured by the sample environment during data integration. The low transmission factor is due to the absortion correction for the reflections affected by shallow angle to the high pressure gasket being hard to apply analytically. ; _diffrn_ambient_temperature 298(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART CCD 1K area detector' _diffrn_measurement_method '\w scans' _diffrn_detector_area_resol_mean 7.9 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1425 _diffrn_reflns_av_R_equivalents 0.0457 _diffrn_reflns_av_sigmaI/netI 0.0458 _diffrn_reflns_limit_h_min -4 _diffrn_reflns_limit_h_max 4 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 3.74 _diffrn_reflns_theta_max 24.52 _reflns_number_total 443 _reflns_number_gt 382 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART-NT V5.0 (Bruker, 1998)' _computing_cell_refinement 'SAINT v6.45A (Bruker, 2003)' _computing_data_reduction 'SAINT v6.45A (Bruker, 2003)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ; OLEX2: a complete structure solution, refinement and analysis program. Dolomanov et al., J. Appl. Cryst. (2009). 42, 339-341 ; _computing_publication_material ; OLEX2: a complete structure solution, refinement and analysis program. Dolomanov et al., J. Appl. Cryst. (2009). 42, 339-341 ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Due to the reduced access to reciprocal space from the sample environment, the model refinement is relatively heavily constrained to reduce the number of parameters. The reduced access ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0476P)^2^+0.1644P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.49(4) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.05(5) _refine_ls_number_reflns 443 _refine_ls_number_parameters 50 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0523 _refine_ls_R_factor_gt 0.0429 _refine_ls_wR_factor_ref 0.1123 _refine_ls_wR_factor_gt 0.1060 _refine_ls_goodness_of_fit_ref 1.217 _refine_ls_restrained_S_all 1.216 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Br1 Br -0.0139(3) 0.9384(4) 0.10864(18) 0.0838(14) Uani 1 1 d . . . F5 F 0.107(2) 0.8983(12) 0.3338(15) 0.091(6) Uani 1 1 d . . . C1 C -0.1452(17) 1.1293(10) 0.2100(11) 0.053(3) Uiso 1 1 d G . . C6 C -0.0647(17) 1.0777(10) 0.3098(11) 0.068(3) Uiso 1 1 d G . . C5 C -0.159(2) 1.2199(15) 0.3848(11) 0.081(4) Uiso 1 1 d G . . H5 H -0.1056 1.1854 0.4516 0.097 Uiso 1 1 calc R . . C4 C -0.335(2) 1.4137(13) 0.3599(12) 0.071(3) Uiso 1 1 d G . . C3 C -0.4152(18) 1.4653(9) 0.2600(12) 0.069(3) Uiso 1 1 d G . . H3 H -0.5324 1.5950 0.2433 0.083 Uiso 1 1 calc R . . C2 C -0.320(2) 1.3231(12) 0.1851(11) 0.068(3) Uiso 1 1 d G . . F2 F -0.396(3) 1.3715(14) 0.0919(16) 0.114(10) Uani 1 1 d . . . F4 F -0.426(2) 1.5495(15) 0.4294(16) 0.097(9) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Br1 0.0815(9) 0.0984(11) 0.073(4) -0.0252(13) 0.0161(10) -0.0045(7) F5 0.101(4) 0.089(6) 0.08(2) 0.013(6) -0.015(7) 0.022(4) F2 0.112(5) 0.107(8) 0.12(4) 0.014(6) -0.006(9) 0.003(4) F4 0.102(6) 0.109(5) 0.08(3) -0.033(7) 0.003(8) 0.025(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Br1 C1 1.879(10) . ? F5 C6 1.310(11) . ? C1 C6 1.3900 . ? C1 C2 1.3900 . ? C6 C5 1.3900 . ? C5 C4 1.3900 . ? C5 H5 0.9300 . ? C4 F4 1.308(15) . ? C4 C3 1.3900 . ? C3 C2 1.3900 . ? C3 H3 0.9300 . ? C2 F2 1.30(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 C1 C2 120.0 . . ? C6 C1 Br1 120.0(6) . . ? C2 C1 Br1 120.0(6) . . ? F5 C6 C1 120.4(11) . . ? F5 C6 C5 119.6(11) . . ? C1 C6 C5 120.0 . . ? C4 C5 C6 120.0 . . ? C4 C5 H5 120.0 . . ? C6 C5 H5 120.0 . . ? F4 C4 C3 119.2(10) . . ? F4 C4 C5 120.8(10) . . ? C3 C4 C5 120.0 . . ? C4 C3 C2 120.0 . . ? C4 C3 H3 120.0 . . ? C2 C3 H3 120.0 . . ? F2 C2 C3 119.9(8) . . ? F2 C2 C1 120.1(8) . . ? C3 C2 C1 120.0 . . ? _diffrn_measured_fraction_theta_max 0.421 _diffrn_reflns_theta_full 24.52 _diffrn_measured_fraction_theta_full 0.421 _refine_diff_density_max 0.290 _refine_diff_density_min -0.276 _refine_diff_density_rms 0.077