Supporting Information

Unique $(H_2O)_{14}$ water clusters with cyclic $(H_2O)_4$ tetramer unit trapped in 3D porous lanthanoid-cyclohexanetetracarboxylate frameworks \dagger

Yong-Cong Ou,^a Zhuo-jia Lin,^a and Ming-Liang Tong*^{a,b}

^a Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education / State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China. E-mail: tongml@mail.sysu.edu.cn

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Experimental Section:

Improved synthesis of $[Tb_4(chtc)_3(H_2O)_{10}]$ ·9H₂O (1): a mixture of Tb(NO₃)₃·6H₂O (0.2 mmol, 0.090 g), CuCl₂·4H₂O (0.1 mmol, 0.018 g), H₄chtc (0.2 mmol, 0.051 g), triethylamine (0.6 mmol, 0.061 g) and distilled H₂O (10 mL) was sealed in a 23-mL Teflon-liner autoclave. Heated in an oven to 140 °C for 5 days, and then cooled to room temperature in the rate of 5 °C/h, yielded colorless crystals of **1** (yield: 23 mg, 26 % based on Tb).

Materials and Physical Measurements. The reagents and solvents employed were commercially available and used as received without further purification. The C, H, and N microanalyses were carried out with an Elementar Vario-EL CHNS elemental analyzer. The FT-IR spectra were recorded from KBr pellets in the range 4000-400 cm⁻¹ on a Bio-Rad FTS-7 spectrometer. X-ray powder diffraction (XRPD) intensities for polycrystalline samples of **1-3** were measured at 293 K on Bruker D8 Advance Diffratometer (Cu-K_{α}, λ = 1.54056 Å) by scanning over the range of 5-60° with step of 0.2°/s. Calculated patterns of **1-3** were generated with Mercury. TG data were obtained on a TG209F3 Tarsus thermogravimetry, with a heating rate of 10 °C min⁻¹ in an nitrogen atmosphere. The emission/excitation spectra in the visible and near-infrared region were measured on an Edinburgh FLS-920 spectrophotometer.

X-Ray Crystallography. Single crystal diffraction intensities of **1** and **2** was collected on a Rigaku R-AXIS SPIDER Image Plate diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). Diffraction data for compound **3** were recorded on a Bruker Apex CCD area detector diffractometer with Mo KR radiation ($\lambda = 0.71073$ Å) at 123 K. Absorption corrections were applied by using multiscan program SADABS.¹ The structure was solved with direct method and refined with full-matrix least-squares technique with the SHELXTL program package.² Anisotropic thermal parameters were applied to all non-hydrogen atoms. The organic hydrogen atoms were generated geometrically (C-H 0.96 Å).

Reference:

1 G. M. Sheldrick, *SADABS 2.05*, University of Göttingen.

2 SHELXTL 6.10, Bruker Analytical Instrumentation, Madison, Wisconsin, USA, 2000.

Fig. S1 XRD patterns of 1 (red), 2 (blue) and 3 (green).

Fig. S2. Coordinated modes of Dy1 (a) and Dy2 (b) atoms, and the view of the 3-fold axis on Dy2 atom (c).

Fig. S3. Space-filling graph of porous sizes in one-fold 3D network structure.

Fig. S4 The space arrangement of two kinds of water clusters along *c*-axis.

Fig. S5 The binding modes of $(H_2O)_{14}$ (a) and $(H_2O)_{12}$ (b) clusters. Colours: red and orange atoms, guest and coordinated water molecules, respectively; grey atoms, hydrogen molecules; green and light purple.

Fig. S6. TGA curve of 1 (a), 2 (b) and 3 (c) under nitrogen gas.

Fig. S7 Variable-temperature X-ray powder diffraction (VTXRPD) of 1 under N_2 blowing at standard atmospheric pressure from 30 °C to 180 °C

Dy(1)-O(1)	2.244(7)	Dy(2)-O(2 <i>b</i>)	2.229(8)
Dy(1)-O(8)	2.316(7)	Dy(2)-O(2)	2.229(8)
Dy(1)-O(2w)	2.324(7)	Dy(2)-O(2 <i>c</i>)	2.229(8)
Dy(1)-O(6 <i>a</i>)	2.363(7)	Dy(2)-O(4w <i>b</i>)	2.347(8)
Dy(1)-O(1w)	2.379(7)	Dy(2)-O(4w)	2.347(8)
Dy(1)-O(3 <i>b</i>)	2.389(7)	Dy(2)-O(4w <i>c</i>)	2.347(8)
Dy(1)-O(4 <i>b</i>)	2.488(7)	Dy(2)-O(3w)	2.386(17)
Dy(1)-O(5 <i>a</i>)	2.515(7)		
O(1)-Dy(1)-O(8)	77.5(3)	O(6 <i>a</i>)-Dy(1)-O(5 <i>a</i>)	53.4(2)
O(1)-Dy(1)-O(2W)	156.2(3)	O(3 <i>b</i>)-Dy(1)-O(5 <i>a</i>)	71.6(2)
O(8)-Dy(1)-O(2W)	79.9(2)	O(4 <i>b</i>)-Dy(1)-O(5 <i>a</i>)	115.2(2)
O(1)-Dy(1)-O(1W)	99.1(3)	O(2)-Dy(2)-O(2 <i>c</i>)	114.17(19)
O(8)-Dy(1)-O(1W)	80.8(2)	O(2)-Dy(2)-O(2 <i>b</i>)	114.17(18)
O(2W)-Dy(1)-O(1W)	84.7(2)	O(2 <i>c</i>)-Dy(2)-O(2 <i>b</i>)	114.17(19)
O(1)-Dy(1)-O(6a)	75.3(3)	O(2)-Dy(2)-O(4Wb)	147.3(3)
O(8)-Dy(1)-O(6a)	139.2(2)	O(2c)-Dy(2)-O(4Wb)	83.9(3)
O(2W)-Dy(1)-O(6a)	127.9(2)	O(2 <i>b</i>)-Dy(2)-O(4W <i>b</i>)	78.5(3)
O(1W)-Dy(1)-O(6a)	74.1(2)	O(2)-Dy(2)-O(4W)	78.5(3)
O(1)-Dy(1)-O(3 <i>b</i>)	96.8(3)	O(2 <i>c</i>)-Dy(2)-O(4W)	147.3(3)
O(8)-Dy(1)-O(3 <i>b</i>)	130.7(2)	O(2 <i>b</i>)-Dy(2)-O(4W)	83.9(3)
O(2W)-Dy(1)-O(3 <i>b</i>)	92.1(2)	O(4Wb)-Dy(2)-O(4W)	72.9(3)
O(1W)-Dy(1)-O(3 <i>b</i>)	147.3(2)	O(2)-Dy(2)-O(4Wc)	83.9(3)
O(6 <i>a</i>)-Dy(1)-O(3 <i>b</i>)	82.6(2)	O(2c)-Dy(2)-O(4Wc)	78.5(3)
O(1)-Dy(1)-O(4 <i>b</i>)	91.9(3)	O(2b)-Dy(2)-O(4Wc)	147.3(3)
O(8)-Dy(1)-O(4 <i>b</i>)	78.4(2)	O(4Wb)-Dy(2)- $O(4Wc)$	72.9(3)
O(2W)-Dy(1)-O(4 <i>b</i>)	76.0(2)	O(4W)-Dy(2)-O(4Wc)	72.9(3)
O(1W)-Dy(1)-O(4 <i>b</i>)	153.7(2)	O(2)-Dy(2)-O(3W)	75.8(2)
O(6 <i>a</i>)-Dy(1)-O(4 <i>b</i>)	132.0(2)	O(2 <i>c</i>)-Dy(2)-O(3W)	75.8(2)
O(3 <i>b</i>)-Dy(1)-O(4 <i>b</i>)	52.6(2)	O(2 <i>b</i>)-Dy(2)-O(3W)	75.8(2)
O(1)-Dy(1)-O(5 <i>a</i>)	128.2(3)	O(4Wb)-Dy(2)-O(3W)	136.67(19)
O(8)-Dy(1)-O(5a)	147.6(2)	O(4W)-Dy(2)-O(3W)	136.67(19)
O(2W)-Dy(1)-O(5a)	75.6(2)	O(4Wc)-Dy(2)-O(3W)	136.67(19)
O(1W)-Dy(1)-O(5a)	76.0(2)		

Table S1. Selected bond lengths (Å) and angles (°) for 3.

Symmetry code: *a*) -x+y+7/3, -x+2/3, z-1/3; *b*) -y+1, x-y-1, z; *c*) -x+y+2,-x+1,z.

D-H…A	d(D-H)	D(H····A)	d(D…A)	<(D-H…A)
O(1W)-H(1WA)O(7a)	0.85	1.92	2.761(10)	171.7
O(1W)-H(1WB)O(5 <i>e</i>)	0.84	2.16	2.846(9)	138.4
O(2W)-H(2WA)O(4 <i>e</i>)	0.85	1.86	2.651(10)	155.1
O(2W)-H(2WB)O(7f)	0.84	1.83	2.653(9)	164.6
O(3W)-H(3W)O(7W)	0.84	1.94	2.67(3)	144.2
O(4W)-H(4WA)O(5W)	0.85	1.97	2.786(12)	163.0
O(4W)-H(4WB)O(4b)	0.84	2.24	2.908(11)	136.0
O(5W)-H(5WA)O(5)	0.84	2.08	2.874(10)	157.1
O(5W)-H(5WB)O(5Wg)	0.84	1.97	2.767(11)	157.5
O(6W)-H(6WA)O(6)	0.84	2.07	2.906(19)	173.2
O(6W)-H(6WB)O(7Wd)	0.84	2.10	2.83(4)	144.9
O(7W)-H(7WA)O(3)	0.85	2.35	3.18(3)	168.0
O(7W)-H(7WB)O(6Wh)	0.85	2.14	2.86(4)	142.0

Table S2. Selected hydrogen bond lengths (Å) and angles (°) for **3**.

-

Symmetry codes: *a*) -x+y+7/3,-x+2/3,z-1/3; *b*) -y+1,x-y-1,z; *c*) -x+y+2,-x+1,z; *d*) -y+2/3,x-y-5/3,z+1/3; *e*) y+4/3,-x+y+2/3,-z-1/3; *f*) -x+7/3,-y-1/3,-z-1/3; *g*) x-y,x-1,-z; *h*) -x+5/3,-y-2/3,-z-2/3.