Spontaneous resolution of a new diphosphonate-functionalized polyoxomolybdate

Hua-Qiao Tan, Wei-Lin Chen, Ding Liu, Yang-Guang Li,* En-Bo Wang*

Figure S1. Polyhedral and ball-and-stick representation of polyoxoanion 1a and 1b.

Figure S2. The "folding" of alkyls are fixed by hydrogen bonds in different direction.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

Figure S3. The polyoxoanion possesses a C_2 symmetry.

Figure S4. Polyhedral and ball-and-stick representation of 3D supramolecular framework in compound **1a** viewed from a axis.

Figure S5. Polyhedral and ball-and-stick representation of 3D supramolecular framework in compound **1a** viewed from b axis.

Figure S6. Polyhedral and ball-and-stick representation of 3D supramolecular framework in compound **1a** viewed from c axis.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

Figure S7. IR spectrum for compound 1.

Figure S8. The UV-Vis spectrum for compound 1 in the solid state.

Figure S9. The TG curve of **1** exhibits three weight loss stages in the temperature ranges 35-600 °C. The first and second weight loss is 17.86% in the temperature range 35-330 °C, corresponding to the release of all the NH_4^+ ions and lattice water molecules in **1** (17.89%). And after 330 °C, polyoxoanion **1** would be decomposed.

Figure S10. The experimental (blue) and Simulated (black) PXRD patterns of compound 1.

Figure S11. The ³¹P NMR spectra of compound **1** with time in D₂O. The ³¹P NMR spectra of compound **1** in D₂O exhibits one main signal at $\delta = +$ 40.1, which is inconsistent with the results of the solid state ³¹P NMR spectra of compound **1** (in which two resonances ($\delta = +$ 26.74 ppm, $\delta = +$ 22.23 ppm) with almost equal relative intensity were exhibited). This means P1, P2, P3 and P4 in polyoxoanion **1** could be of the same chemical environment in D₂O. In other words, the chirality of polyoxoanion **1** can not be retained in D₂O. This restriction of "folding" alkyls induced chiral polyoxometalate can only exist in the solid state. The weak signals at $\delta = +$ 38.4, $\delta = +$ 37.1 and $\delta = +$ 36.3 ppm may come from impurity or intergradation of the polyoxoanion.

Figure S12. The ³¹P NMR spectrum of pure alendronic acid in D_2O at the same pH as the solutions of the title compound.

Hydrogen bonds

Intramolecular hydrogen bonds in the polyoxoanion:

Figure S13. The intramolecular hydrogen bonds in the polyoxoanion. They range from 2.610 Å to 3.171 Å.¹⁻⁴ These hydrogen bonds help to stabilise the structure of polyoxoanion.

Table S1. Intraniorecular hydrogen bonds in the polyoxoanion				
C2–H2A…O7	2.616 Å	С2–Н2А…О13	2.708 Å	
С2–Н2В…О3	3.022 Å	С2–Н2В…О12	3.171 Å	
С3–НЗА…О7	2.690 Å	С3–Н3А…О10	2.974 Å	

Table S1. Intramolecular hydrogen bonds in the polyoxoanion

2.610 Å

C3-H3B…O10

Intermolecular hydrogen bonds:

1) The intermolecular hydrogen bonds between polyoxoanions:

Figure S14. The intermolecular hydrogen bonds between polyoxoanions. The hydrogen bonds are in the range of 1.965-2.962 Å. ¹⁻⁴ The hydrogen bonds restrict the folding alkyls of polyoxoanion in different direction, thus made the symmetry of polyoxoanion reduced from the C_{2v} ("W-shaped" structure) to C_2 . Chirality of polyoxoanion have been realized. And then these hydrogen bonds linked the adjacent homochiral polyoxoanions to form a 3D homochiral supramolecular structure. Therefore, spontaneous resolution of the title chiral polyoxoanions have been observed.

N1–H1A…O6	2.010 Å	N1–H1A…O11	2.648 Å
N1–H1A…O1	2.962 Å	N1–H1A…O4	2.961 Å
N1-H1B…O1	2.682 Å	N1-H1B…O15	1.965 Å
N1–H1C…O11	2.835 Å	N1–H1C…O4	2.838 Å
С4–Н4А…О12	2.882 Å	С4–Н4В…О2	2.834 Å
С4–Н4В…О4	2.789 Å	С3–Н3А…О15	2.595 Å

Table S2. The intermolecular hydrogen bonds between polyoxoanions.

2) The intermolecular hydrogen bonds between polyoxoanions, NH_4^+ and lattice water molecules:

Figure S15. Partial intermolecular hydrogen bonds between polyoxoanions, NH_4^+ and lattice water molecules. Owing to some NH_4^+ and lattice water molecules disordered, partial intermolecular hydrogen bonds between polyoxoanions, NH_4^+ and lattice water molecules have been studied. The hydrogen bonds are in the range of 1.770-2.975 Å.¹⁻⁴ NH_4^+ and lattice water molecules occupy the supramolecular channels, and interact each other and polyoxoanions by hydrogen bonds to stabilise the supramolecular channels.

Table S3. Partial intermolecular hydrogen bonds between polyoxoanions, NH_4^+ and lattice water molecules.

N2–H2C···O7W	2.879 Å	N2-H2C…O6W	1.869 Å
N2-H2D…O10	2.944 Å	N2-H2E…O10	2.973 Å
N2–H2E…O7W	1.955 Å	N2–H2F…O10	1.894 Å
O5W–H5B…O6W	2.933 Å	O5W–H5B…O5	2.678 Å
O5W–H5B…O2W	2.984 Å	O5W–H5B…N4A	2.937 Å
O6W–H6A…O2	2.426 Å	O6W–H6A…N4A	1.770 Å
O6W–H6B…N2	2.616 Å	O7W–H7A…O14	2.539 Å
O7W–H7B…N2	1.975 Å		

References

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2010

- 1 G. A. Jeffrey, Cryst. Rev., 2003, 9, 135-176.
- 2 T. Steiner, Angew. Chem. Int. Ed., 2002, 41, 48-76.
- 3 G. R. Desiraju, Acc. Chem. Res., 1996, 29, 441-449.
- 4 M. J. Calhorda, Chem. Comm., 2000, 801-809.