Towards polymorphism control in coordination networks and metallo-organic salts
Christopher J. Adams, Amy L. Gillon, Matteo Lusi and A. Guy Orpen*
School of Chemistry, University of Bristol, Bristol BS8 1TS

Supplementary information

Pages 2-7: Powder XRD patterns
Page 8: TGA of 3
Pages 9-10: SEM images and EDAX maps of $\mathbf{3}_{0.5}$ and $\mathbf{4}_{0.5}$
Page 11: Details of the crystal structures of 3_{x} with $\mathrm{x}=0.95,0.93$ and 0.86

Figure S1: PXRD patterns for [4,4'- $\left.\mathrm{H}_{2} \mathrm{bipy}\right]\left[\mathrm{ZnCl}_{4}\right]$ 3: calculated from the crystal structure (black); solution synthesis (blue, Scheme route (vi)); grinding synthesis (green, Scheme route (vii)); HCl absorption (purple, Scheme route (viii)).

Figure S2: Comparison of the PXRD patterns calculated for the various polymorphs of $\mathbf{4}$ with those measured from the product obtained by various methods: 1) calculated for $\mathbf{4 a}$ (black, C2/c phase); 2) solution synthesis (blue, Scheme route (ii)); 3) grinding (green, Scheme route (v)); 4) thermal elimination (red, Scheme route (i)); 5) mechanochemical elimination with KOH (light blue, Scheme route (iii)); 6) calculated for $\mathbf{4 b}$ (yellow, Pnma phase); 7) By reaction of [4,4'- H_{2} bipy] Cl_{2} with basic zinc carbonate (violet, Scheme route (iv)); 8) calculated for 4c (brown, Pban phase).

Figure S3: Comparison of PXRD patterns measured for different samples: mixing equivalent amounts of $\mathbf{2}$ and $\mathbf{4}$ obtained from solution (pink), containing all three phases; solution synthesis of $\mathbf{4}_{0.5}$ (blue), containing phases $\mathbf{4 b}$ and $\mathbf{4 c}$; grinding synthesis of $\mathbf{4}_{0.5}$ (green), containing just $\mathbf{4 c}$.

Figure S4: Comparison of PXRD patterns measured for $\mathbf{4}_{\mathrm{x}}$ obtained by grinding 4,4'-bipy with cobalt and zinc chloride in a $1: 3$ ratio $4_{0.75}$ (blue), in a $1: 1$ ratio $4_{0.5}$ (green) and a $3: 1$ ratio $4_{0.25}$ (pink). Peaks due to the tetrahedral Pnma polymorph 4b are indicated by arrows, and others are due to the octahedral Pban polymorph 4c.

Figure S5: PXRD patterns for samples of $\left[\left\{\left(4,4^{\prime}-\text { bipy }\right) \mathrm{Co}_{1-\mathrm{x}} \mathrm{Zn}_{x} \mathrm{Cl}_{2}\right\}_{n}\right] \mathbf{4}_{\mathrm{x}}$ obtained by thermal elimination from [4,4'- H_{2} bipy $]\left[\mathrm{Co}_{1-\mathrm{x}} \mathrm{Zn}_{\mathrm{x}} \mathrm{Cl}_{4}\right] \mathbf{3}_{\mathrm{x}}$: Co / Zn in $1: 3$ ratio $\mathbf{4}_{0.75}$ (blue); Co / Zn in $1: 1$ ratio $\mathbf{4}_{0.5}$ (green); Co / Zn in $3: 1$ ratio $\mathbf{4}_{0.25}$ (pink).

$2 \theta /^{\circ}$

Figure S6: PXRD patterns for samples of $\left[\left\{\left(4,4^{\prime}-\text { bipy }\right) \mathrm{Co}_{1-x} \mathrm{Zn}_{x} \mathrm{Cl}_{2}\right\}_{n}\right] \mathbf{4}_{\mathrm{x}}$ obtained by mechanochemical elimination from [4,4'- H_{2} bipy $]\left[\mathrm{Co}_{1-x} \mathrm{Zn}_{x} \mathrm{Cl}_{4}\right] \mathbf{3}_{\mathrm{x}}$: Co / Zn in 1:3 ratio, $\mathbf{4}_{0.75}$ (blue); Co / Zn in $1: 1$ ratio, $\mathbf{4}_{0.5}$ (green); Co / Zn in 3:1 ratio, $\mathbf{4}_{0.25}$ (pink).

Figure S7: TGA of $\left[4,4^{\prime}-\mathrm{H}_{2} \mathrm{bipy}\right]\left[\mathrm{ZnCl}_{4}\right]$ (3). Size 3.769 mg Ramp $10.00^{\circ} \mathrm{C} / \mathrm{min}$ to $600.00^{\circ} \mathrm{C}$ Balance Gas: Nitrogen $40.0 \mathrm{ml} / \mathrm{min}$ Sample Gas: Nitrogen $60.0 \mathrm{ml} / \mathrm{min}$.

Figure S8: SEM images and $\mathrm{Co} \mathrm{K}_{\alpha 1}$ and $\mathrm{Zn} \mathrm{K}_{\alpha 1}$ EDAX map scans of [\{(4,4'-bipy) $\left.\mathrm{Co}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Cl}_{2}\right\}_{\mathrm{n}}$] (40.5) obtained by mixing 4,4'-bipy, CoCl_{2} and ZnCl_{2} in a 2:1:1 ratio in a solution of ethanol.

Figure S9: SEM images and $\mathrm{Co} \mathrm{K}_{\alpha 1}$ and $\mathrm{Zn} \mathrm{K}_{\alpha 1}$ EDAX map scans of [\{(4,4'-bipy) $\left.\left.\mathrm{Co}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Cl}_{2}\right\}_{n}\right]\left(4_{0.5}\right)$ obtained by manually grinding 4,4'-bipy, CoCl_{2} and ZnCl_{2} in a $2: 1: 1$ ratio with a drop of ethanol.

Figure S10: SEM images and Co $\mathrm{K}_{\alpha 1}$ and $\mathrm{Zn} \mathrm{K}_{\alpha 1} \mathrm{EDAX}$ map scans of [4,4'- H_{2} bipy] $\mathrm{Co}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Cl}_{4}$] ($\mathbf{3}_{0.5}$) obtained by grinding [4,4'- H_{2} bipy $] \mathrm{Cl}_{2}, \mathrm{CoCl}_{2}$ and ZnCl_{2} in a 2:1:1 ratio.

Figure S11: SEM images and Co $\mathrm{K}_{\alpha 1}$ and $\mathrm{Zn} \mathrm{K}_{\alpha 1}$ EDAX map scans of [\{(4,4'-bipy) $\left.\mathrm{Co}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Cl}_{2}\right\}_{n}$] $\left(\mathbf{4}_{0.5}\right)$ obtained by thermal elimination of 2 equivalents of HCl from $\left[4,4^{\prime}-\mathrm{H}_{2}\right.$ bipy $]\left[\mathrm{Co}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Cl}_{4}\right]\left(\mathbf{3}_{0.5}\right)$.

Figure S12: $\mathrm{K}_{\alpha 1}$ and $\mathrm{K} \mathrm{K}_{\alpha 1}$ EDAX map scans of $\left[\left\{\left(4,4^{\prime}-\text { bipy }\right) \mathrm{Co}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Cl}_{2}\right\}_{n}\right]$ ($\mathbf{4}_{0.5}$) obtained by mechanochemical elimination of 2 equivalents of HCl from from $\left[4,4^{\prime}-\mathrm{H}_{2} \mathrm{bipy}^{2}\right]\left[\mathrm{Co}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Cl}_{4}\right]\left(\mathbf{3}_{0.5}\right)$.

Compound reference	$\mathbf{3}_{0.86}$	$\mathbf{3}_{0.93}$	$\mathbf{3}_{0.95}$
Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{Co}_{0.14} \mathrm{~N}_{2} \mathrm{Zn}_{0.86}$	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{Co}_{0.07} \mathrm{~N}_{2} \mathrm{Zn}_{0.93}$	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{Co}_{0.05} \mathrm{~N}_{2} \mathrm{Zn}_{0.95}$
Formula Mass	364.48	364.90	364.90
Crystal system	Monoclinic	Monoclinic	Monoclinic
$a / \AA{ }^{\text {A }}$	7.6596(2)	7.65960(10)	7.6491(6)
b/Å	19.7497(7)	19.7388(4)	19.7209(16)
$c / \AA{ }^{\text {c }}$	9.4708(3)	9.4616(2)	9.4569(8)
$\alpha 1^{\circ}$	90.00	90.00	90.00
$\beta 1{ }^{\circ}$	109.067(2)	109.0620(10)	109.049(2)
$\gamma /{ }^{\circ}$	90.00	90.00	90.00
Unit cell volume/ \AA^{3}	1354.09(7)	1352.07(4)	1348.43(19)
Temperature/K	120(2)	120(2)	120(2)
Space group	$P 21 / c$	$P 2{ }_{1} / c$	$P 2{ }_{1} / c$
No. of formula units per unit cell, Z	4	4	4
Absorption coefficient, μ / mm^{-1}	2.504	2.544	2.473
No. of reflections measured	14086	17759	12415
No. of independent reflections	3096	3100	3745
$R_{\text {int }}$	0.0798	0.0334	0.0242
Final R_{l} values ($I>2 \sigma(I)$)	0.0629	0.0216	0.0221
Final $w R\left(F^{2}\right)$ values ($I>2 \sigma(I)$)	0.1203	0.0489	0.0575
Final R_{l} values (all data)	0.0915	0.0253	0.0228
Final $w R\left(F^{2}\right)$ values (all data)	0.1352	0.0503	0.0580
Goodness of fit on F^{2}	1.098	1.080	1.052

Table S1: Details of the crystal structure determinations of $\mathbf{3}_{\mathbf{x}}$ with $\mathrm{x}=0.95,0.93$ and 0.86

