Supporting Information

Polymorphic and Morphological Selection of CaCO₃ by Magnesium-Assisted Mineralization in Gelatin: Magnesium-Rich Spheres Consisting of Centrally Aligned Calcite Nanorods and Their Good Mechanical Properties

Junwu Xiao, and Shihe Yang*

Department of Chemistry, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China) E-mail: chsyang@ust.hk Calculating the percentages of aragonite and magnesium calcites: The percentages of aragonite (A) and magnesium calcite (MC) in the samples of G_3Mg_{50} and G_5Mg_{50} are determined by the Reference Intensity Rations (RIR) method, and calculated by the following equations:

$$W_{A} = \frac{I_{A}}{I_{A} + \frac{I_{MC}}{K_{A}^{MC}}} \qquad W_{MC} = \frac{I_{MC}}{I_{MC} + \frac{I_{A}}{K_{MC}^{A}}} = 1 - W_{A}$$
$$K_{A}^{MC} = \frac{K_{Al_{2}O_{3}}^{MC}}{K_{Al_{2}O_{3}}^{A}} = 2.00 \qquad K_{MC}^{A} = \frac{K_{Al_{2}O_{3}}^{A}}{K_{Al_{2}O_{3}}^{MC}} = 0.50$$

 W_A and W_{MC} are the percentages of aragonite and magnesium calcite phases in the samples, respectively. I_A and I_{MC} are the intensity of (111) of aragonite and (104) of magnesium calcite phases in the XRD pattern, respectively. $K^A_{Al_2O_3}$ and $K^{MC}_{Al_2O_3}$ are the K values of aragonite and magnesium calcite phases relative to Al₂O₃ crystals, respectively.

Fig. SI-1. The high magnification SEM image of $CaCO_3$ · H_2O in the sample of G_1Mg_{50} . Together with Fig. 2B, it shows that the $CaCO_3$ · H_2O particles in the sample of G_1Mg_{50} are in spindle shape.

Fig. SI-2. Raman spectrum of hemispherical shaped microparticles of G_3Mg_{50} (Lattice mode of aragonite: 151, 206 and 275 cm⁻¹; v₄ in-plane bending of aragonite: 705 cm⁻¹; v₁ symmetric stretching of aragonite: 1085 cm⁻¹).^[1] The Raman spectrum reveals that the hemispherical shaped microparticles are in aragonite phase.

Fig. SI-3. Raman spectrum of microspheres of G_5Mg_{50} (Lattice mode of magnesium calcite: 287 cm⁻¹; v_4 in-plane bending of magnesium calcite: 712 cm⁻¹; v_1 symmetric stretching of magnesium calcite: 1090 cm⁻¹; v_3 asymmetric stretching of magnesium calcite: 1437 cm⁻¹; overtone (v_2 out of plane bending×2) of magnesium calcite: 1750 cm⁻¹).^[1] The Raman spectrum reveals that the microspheres of G_5Mg_{50} are in magnesium calcite phase.

Fig. SI-4. SEM image showing the surface of hemispherical shaped aragonite microparticles of G_3Mg_{50} . Together with Fig. 2C and D, it shows that aragonite hemispheres are assembled by random aggregation of ~30 nm nanoparticles.

Fig. SI-5. SEM image of the surface of high magnesium calcite microspheres (HMCMs) in the sample of G_5Mg_{50} . Together with Fig. 2E and F, it shows that G_5Mg_{50} HMCMs are composed of the centrally aligned nanorods.

Fig. SI-6. SEM image showing the surface of low magnesium calcite microspheres (LMCMs) in the sample of G_5Mg_{20} . Together with Fig. 3A and B, it reveals that G_5Mg_{20} LMCMs are assembled from worm-like nanoparticles ~15 nm in diameter and ~100 nm in length in a way similar to wing wool into a ball.

Fig. SI-7. TGA curves of G_1Mg_{50} , G_3Mg_{50} , G_5Mg_{50} , G_5Mg_{20} and G_5Mg_0 . Several features can be recognized from the TGA curves. First, free and bound water molecules were fully lost at < 200 °C. Second, gelatin matrix was decomposed in the temperature range between 200 and 350 °C, and the organic residues were continually burned between 350 and 600 °C. Third, the CaCO₃ crystals began to decompose at > 600 °C. As for calculating the percentages of the different components in the samples, the percentages of inorganic component are calculated from the transition around 600 °C. The percentages of water are calculated before the first transition. The rests are the percentages of gelatin matrix.

[1] C. Gabrielli, R. Jaouhari, S. Joiret and G. Maurin, *J. Raman Spectrosc.*, 2000, **31**, 497-501.