Linear extension of bithiophene compounds by the combination of C-N covalent bond cross-coupling and N-Ag coordinative bond formation

Li Wang, Tao Tao, Shu-Jun Fu, Cheng Wang, Wei Huang, Xiao-Zeng You

Electronic Supporting Information

Table 1Selected bond distances (Å) and bond angles (°) in ligand L and three
silver(I) complexes 1-3.

L					
C1-N1	1.406(8)	C4–S1	1.739(6) C6–N2 1		1.359(9)
C1–S1	1.733(6)	C5-N2	1.300(9) C7–N1		1.375(8)
$C4-C4^{a}$	1.450(11)	C5-N1	1.354(8)		
C5-N1-C7	105.6(5)	C7-N1-C1	128.1(5)	C1-S1-C4	90.6(3)
C5-N1-C1	126.3(5)	C5-N2-C6	104.9(6)		
^a - <i>x</i> , 1- <i>y</i> , 1- <i>z</i> .					
1					
Ag1–N2 ^a	2.172(5)	C1-N1	1.412(8)	C5-N1	1.380(9)
Ag1–N2	2.172(5)	C1–S1	1.717(6)	C6-N2	1.376(9)
Ag1–O1 ^a	2.745(8)	C4–S1	1.730(7)	C7-N1	1.377(8)
Ag1–O1	2.745(8)	O1 ^a –Ag1–O1	46.0(3)		
N2 ^a -Ag1-N2	152.1(3)	C5-N2	1.303(8)	O2–N3–O1 ^a	119.0(6)
N2 ^a -Ag1-O1 ^a	81.4(2)	C7-N1-C5	106.9(6)	O2-N3-O1	119.0(6)
N2–Ag1–O1 ^a	126.4(2)	C7-N1-C1	127.2(6)	O1 ^a –N3–O1	122.0(11)
N2 ^a –Ag1–O1	126.4(2)	C5-N1-C1	125.8(6)	C1-S1-C4	90.9(3)
N2-Ag1-O1	81.4(2)	C5-N2-C6	106.4(6)		
^a 3- <i>x</i> , <i>y</i> , 0.5- <i>z</i> .					
2					
Ag1–N4	2.140(6)	C8–N3	1.405(9)	C6-N2	1.374(10)
Ag1–N2	2.134(6)	C8–S2	1.727(7)	C7-N1	1.376(9)
Ag1–O2 ^a	2.843(6)	C11–C11 ^b	1.425(14)	C1-N1	1.404(9)
C12-N4	1.317(9)	C11–S2	1.739(7)	C1-S1	1.730(7)
C12-N3	1.335(9)	C5–N2	1.319(9)	$C4-C4^{c}$	1.464(14)
C13–N4	1.357(10)	C5-N1	1.329(9)	C4–S1	1.736(6)
C14-N3	1.389(9)	C5-N2-C6	105.4(6)	C5-N1-C1	125.2(6)
C12-N4-Ag1	120.7(5)	N4–Ag1–N2	159.1(2)	C7-N1-C1	127.5(6)
C13-N4-Ag1	132.6(5)	C12-N3-C14	106.5(6)	C1-S1-C4	90.2(4)

Supplementary Material (ESI) for CrystEngComm
This journal is © The Royal Society of Chemistry 2011

C12–N3–C8	124.9(6)	C12-N4-C13	106.1(6)	C8–S2–C11	90.9(4)	
C14-N3-C8	128.4(6)	C5-N1-C7	107.1(6)			
^a 1+ <i>x</i> , 1+ <i>y</i> , <i>z</i> ; ^b 1- <i>x</i>	, 1-y, -z; ° 3-x	x, 1-y, 1-z.				
3						
Ag1–N4 ^a	2.126(5)	C10-N2	1.349(8)	C12-N4	1.316(6)	
Ag1–N2	2.126(4)	C1-N1	1.416(6)	C12-N3	1.352(6)	
Ag1–O2 ^b	2.738(9)	C1–S1	1.721(5)	C13-N4	1.364(8)	
Ag1–Ag1 ^c	3.0084(9)	C4–S1	1.726(4)	C14-N3	1.365(7)	
C9-N2	1.310(6)	C5–S2	1.723(5)	C15–O2	1.156(11)	
C9-N1	1.336(6)	C8–N3	1.418(6)	C15–O1	1.191(9)	
C11-N1	1.358(7)	C8–S2	1.711(5)	C14-N3-C8	127.4(4)	
N4 ^a -Ag1-N2	169.0(2)	C9-N1-C11	106.2(5)	C12-N4-C13	106.1(5)	
N4 ^a –Ag1–O2 ^b	91.3(3)	C9-N1-C1	126.1(4)	C1-S1-C4	91.4(2)	
N2–Ag1–O2 ^b	93.4(3)	C11-N1-C1	127.6(5)	C8-S2-C5	91.1(2)	
N4 ^a -Ag1-Ag1 ^c	96.4(1)	C12-N3-C14	106.8(4)	O2 ^b -Ag1-Ag1 ^c	88.8(3)	
N2–Ag1–Ag1 ^c	93.7(1)	C12-N3-C8	125.8(4)	C9-N2-C10	105.2(5)	
^a $1+x$, $1+y$, $-1+z$; ^b $2-x$, $1-y$, $-z$; ^c $3-x$, $1-y$, $-z$; ^d $-1+x$, $-1+y$, $1+z$.						

Table 2. Hydrogen-bonding parameters (Å, °) in ligand L and three silver(I)

complex	xes 1-3				
D–H···A	D–H	Н…А	D····A	∠DHA	Sym. Trans.
L					
C2-H2N2	0.93	2.52	3.446(8)	175	-x, 1/2+y, 1/2-z
1					
C2-H2···O1	0.93	2.42	3.247(10)	148	-1+ <i>x</i> , -1+ <i>y</i> , <i>z</i>
C5–H5…O2	0.93	2.33	3.163(9)	149	<i>x</i> , -1+ <i>y</i> , <i>z</i>
C6–H6…O1	0.93	2.44	3.067(10)	125	
2					
С5–Н5…ОЗ	0.93	2.58	3.438(16)	153	1+ <i>x</i> , <i>y</i> , <i>z</i>
C10-H10····O4	0.93	2.56	3.430(11)	155	1/2-x, $-1/2+y$, $1/2-z$
C12-H12···O4	0.93	2.44	3.220(11)	142	1+ <i>x</i> , <i>y</i> , <i>z</i>
C13-H13····O1	0.93	2.51	3.232(12)	134	1+ <i>x</i> , 1+ <i>y</i> , <i>z</i>
3					
C2-H2···O1	0.93	2.54	3.427(10)	160	1+x, -1+y, z
C13-H13-01	0.93	2.58	3.337(10)	138	<i>x</i> , -1+ <i>y</i> , 1+ <i>z</i>

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

Fig. SI1. View of the hydrogen bonding and π - π stacking interactions in L.

Fig. SI2. View of the undulating chains in $[Ag(L)NO_3]_n$ (1).

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

Fig. SI3. View of the π - π stacking and Ag- π interactions in complex 2

Fig. SI4. View of the π - π stacking and hydrogen bonding interactions in $[Ag(L)(CF_3COO)]_n$ (3)

Fig. SI5. The simulative (black line) and experimental (red line) powder X-ray

diffraction patterns for L.

Fig. SI6. The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for **1**.

Fig. SI7. The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for **2**.

Fig. SI8. The simulative (black line) and experimental (red line) powder X-ray diffraction patterns for **3**.

Fig. SI9. Solid-state fluorescence emission spectra of L, 1, 2 and 3 at room temperature.