Supporting information

New extended poly(oxomolybdophosphates) based on strontium(II)

linkers

Kai Yu,^{*a,b*} Wei-Lin Chen,^{*c*} Bai-Bin Zhou,^{*a,b*} Yang-Guang Li,^{*c*} Yang Yu,^{*a*} Zhan-Hua Su,^{*a*} Song Gao^{*a*} and Ying Chen^{*a*}

(a) (b) (c)

Fig. S1 ORTEP view of the basic units in compound 1 with 50% thermal ellipsoids: (a) the sandwich-type $\{Fe(P_4Mo_6)_2\}$ unit; (b) the trinuclear $\{Sr_2Fe\}$ linker; (c) the $[Fe(2,2'-bpy)_3]^{3+}$ cationic unit.

Fig. S2 The packing arrangement of compound 1 viewed along *b* axis. The isolated sodium cations, phosphate anions, and solvent water molecules are omitted for clarity.

1. Structural figures

Fig. S3 (a) 1-D chain of the poly(oxomolybdophosphate) based on {Mn(P₄Mo₆)₂} units and {Sr₂Mn} linkers in 2; (b) The trinuclear linking moiety of {Sr₂Mn} in 2; (c) Connection mode between trinuclear {Sr₂Mn} unit and its adjacent {P₄Mo₆} fragments in 2.

Fig. S4 ORTEP view of the basic units in compound 2 with 50% thermal ellipsoids: (a) the sandwich-type $\{Mn(P_4Mo_6)_2\}$ unit; (b) the trinuclear $\{Sr_2Mn\}$ linker; (c) $[H_2bpp]^{2+}$ protonated ligand.

Fig. S5 The packing arrangement of compound 2 viewed along *a* axis. The isolated solvent water molecules are omitted for clarity.

Fig. S6 (a) 1-D chain of the poly(oxomolybdophosphate) based on {Cd(P₄Mo₆)₂} units and {Sr₂Cd} linkers in 3; (b) The trinuclear linking moiety of {Sr₂Cd} in 3; (c) Connection mode between trinuclear {Sr₂Cd} unit and its adjacent {P₄Mo₆} fragments in 3.

Fig. S7. ORTEP view of the basic units in compound 3 with 50% thermal ellipsoids: (a) the sandwich-type $\{Cd(P_4Mo_6)_2\}$ unit; (b) the trinuclear $\{Sr_2Cd\}$ linker; (c) $[H_2bpy]^{2+}$ protonated ligand.

Fig. S8. The packing arrangement of compound 3 viewed along *a* axis. The isolated solvent water molecules are omitted for clarity.

Fig. S9. ORTEP view of the basic units in compound 4 with 50% thermal ellipsoids: (a) the sandwich-type $\{Mn(P_4Mo_6)_2\}$ unit; (b) the trinuclear $\{Sr_4Mn\}$ linker; (c) $[H_2bpy]^{2+}$ protonated ligand.

2. Structural data

Mo(1)-O(27)	1.671(3)	Mo(3)-O(18)	1.677(3)	Mo(5)-O(29)	1.674(3)
Mo(1)-O(7)	1.941(3)	Mo(3)-O(14)	1.931(3)	Mo(5)-O(14)	1.933(3)
Mo(1)-O(1)	1.977(3)	Mo(3)-O(3)	1.974(3)	Mo(5)-O(3)	1.983(3)
Mo(1)-O(17)	2.056(3)	Mo(3)-O(10)#1	2.077(3)	Mo(5)-O(20)#1	2.061(3)
Mo(1)-O(13)	2.104(3)	Mo(3)-O(8)#1	2.118(3)	Mo(5)-O(6)#1	2.101(3)
Mo(1)-O(12)	2.302(3)	Mo(3)-O(5)#1	2.289(3)	Mo(5)-O(4)#1	2.301(3)
Mo(2)-O(19)	1.674(3)	Mo(4)-O(24)	1.677(3)	Mo(6)-O(21)	1.681(3)
Mo(2)-O(7)	1.941(3)	Mo(4)-O(16)	1.951(3)	Mo(6)-O(16)	1.942(3)
Mo(2)-O(1)	1.980(3)	Mo(4)-O(2)	1.977(3)	Mo(6)-O(2)	1.975(3)
Mo(2)-O(9)	2.072(3)	Mo(4)-O(22)	2.051(3)	Mo(6)-O(25)	2.038(3)
Mo(2)-O(8)	2.116(3)	Mo(4)-O(6)	2.092(3)	Mo(6)-O(13)	2.081(3)
Mo(2)-O(5)	2.269(3)	Mo(4)-O(4)	2.254(3)	Mo(6)-O(12)	2.291(3)
Mo(1)Mo(2)	2.5963(5)	Mo(4)Mo(6)	2.5976(5)	Mo(3)Mo(5)	2.587(5)
Sr(1)-O(28)	2.494(4)	Sr(1)-O(15)	2.610(3)	Sr(1)-O(11)#2	2.705(3)
Sr(1)-O(9W)	2.543(5)	Sr(1)-O(16)	2.621(3)	Sr(1)-O(10W)	2.702(5)
Sr(1)-O(26)#2	2.597(3)	Sr(1)-O(8W)	2.655(6)		
Fe(1)-N(6)	1.965(5)	Fe(2)-O(2)#1	2.096(3)	Fe(3)-O(15)#2	2.100(3)
Fe(1)-N(1)	1.968(5)	Fe(2)-O(2)	2.096(3)	Fe(3)-O(15)	2.100(3)
Fe(1)-N(4)	1.966(4)	Fe(2)-O(1)	2.192(3)	Fe(3)-O(7W)#2	2.153(4)
Fe(1)-N(5)	1.968(5)	Fe(2)-O(1)#1	2.192(3)	Fe(3)-O(7W)	2.153(4)
Fe(1)-N(3)	1.969(5)	Fe(2)-O(3)	2.228(3)	Fe(3)-O(11)	2.168(3)
Fe(1)-N(2)	1.970(4)	Fe(2)-O(3)#1	2.228(3)	Fe(3)-O(11)#2	2.168(3)
P(1)-O(23)	1.515(5)	P(2)-O(15)	1.508(3)	P(3)-O(11)	1.499(3)
P(1)-O(22)	1.517(4)	P(2)-O(4)	1.544(3)	P(3)-O(10)	1.529(3)
P(1)-O(20)	1.531(4)	P(2)-O(5)	1.544(3)	P(3)-O(9)	1.536(3)
P(1)-O(31)	1.557(4)	P(2)-O(12)	1.549(3)	P(3)-O(26)	1.591(3)
P(4)-O(28)	1.501(3)	P(4)-O(25)	1.544(3)		
P(4)-O(17)	1.528(3)	P(4)-O(30)	1.574(4)		
O(27)-Mo(1)-O(13)	97.82(14)	O(19)-Mo(2)-O(8)	96.26(14)	O(18)-Mo(3)-O(8)#1	97.18(15)
O(7)-Mo(1)-O(13)	156.35(12)	O(7)-Mo(2)-O(8)	156.89(12)	O(14)-Mo(3)-O(8)#1	155.60(12)
O(1)-Mo(1)-O(13)	85.55(11)	O(1)-Mo(2)-O(8)	86.57(11)	O(3)-Mo(3)-O(8)#1	85.88(11)
O(17)-Mo(1)-O(13)	84.75(12)	O(9)-Mo(2)-O(8)	84.37(12)	O(10)#1-Mo(3)-O(8)#1	85.01(12)
O(13)-Mo(1)-O(12)	73.20(11)	O(8)-Mo(2)-O(5)	72.67(10)	O(10)#1-Mo(3)-O(5)#1	78.57(11)
O(24)-Mo(4)-O(6)	96.54(15)	O(29)-Mo(5)-O(6)#1	98.08(15)	O(21)-Mo(6)-O(13)	99.15(15)
O(16)-Mo(4)-O(6)	157.15(12)	O(14)-Mo(5)-O(6)#1	154.89(13)	O(16)-Mo(6)-O(13)	155.04(12)
O(2)-Mo(4)-O(6)	87.10(12)	O(3)-Mo(5)-O(6)#1	85.69(12)	O(2)-Mo(6)-O(13)	87.19(12)
O(22)-Mo(4)-O(6)	85.83(14)	O(20)#1-Mo(5)-O(6)#1	83.48(13)	O(25)-Mo(6)-O(13)	83.01(13)
O(6)-Mo(4)-O(4)	73.92(11)	O(6)#1-Mo(5)-O(4)#1	72.76(11)	O(13)-Mo(6)-O(12)	73.84(11)
O(28)-Sr(1)-O(9W)	78.47(16)	O(28)-Sr(1)-O(8W)	146.52(17)	O(28)-Sr(1)-O(15)	85.41(12)
O(28)-Sr(1)-O(26)#2	91.50(11)	O(28)-Sr(1)-O(11)#2	76.92(11)	O(28)-Sr(1)-O(16)	98.90(10)
O(28)-Sr(1)-O(10W)	146.20(13)				
N(6)-Fe(1)-N(1)	95.62(19)	O(2)#1-Fe(2)-O(1)	83.59(11)	O(15)#2-Fe(3)-O(7W)	86.57(13)
N(6)-Fe(1)-N(4)	174.8(2)	O(2)-Fe(2)-O(1)	96.41(11)	O(15)-Fe(3)-O(7W)	93.43(13)
N(6)-Fe(1)-N(5)	82.1(2)	O(1)-Fe(2)-O(1)#1	180.00	O(7W)#2-Fe(3)-O(7W)	180.00
N(6)-Fe(1)-N(3)	88.2(2)	O(1)-Fe(2)-O(3)#1	95.44(10)	O(7W)-Fe(3)-O(11)	85.67(13)
N(6)-Fe(1)-N(2)	94.0(2)	O(1)-Fe(2)-O(3)	84.56(10)	O(7W)-Fe(3)-O(11)#2	94.33(13)

Table S1 Selected bond lengths (Å) and bond angles (°) of compound 1 $% \mathcal{A}^{(n)}$

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z; #2 -x+1/2,-y+1/2,-z

Mo(1)-O(30)	1.675(5)	Mo(3)-O(15)	1.676(5)	Mo(5)-O(31)	1.677(5)
Mo(1)-O(19)	1.948(5)	Mo(3)-O(11)	1.950(5)	Mo(5)-O(11)	1.949(5)
Mo(1)-O(3)	1.973(5)	Mo(3)-O(1)	1.974(5)	Mo(5)-O(1)	1.976(5)
Mo(1)-O(13)#1	2.077(5)	Mo(3)-O(24)	2.071(5)	Mo(5)-O(20)	2.061(5)
Mo(1)-O(8)	2.103(5)	Mo(3)-O(9)#1	2.094(5)	Mo(5)-O(10)	2.094(5)
Mo(1)-O(2)	2.268(5)	Mo(3)-O(6)	2.266(5)	Mo(5)-O(12)	2.271(5)
Mo(2)-O(25)	1.667(5)	Mo(4)-O(14)	1.671(5)	Mo(6)-O(29)	1.670(6)
Mo(2)-O(7)	1.935(5)	Mo(4)-O(7)	1.938(5)	Mo(6)-O(19)	1.938(5)
Mo(2)-O(4)	1.977(5)	Mo(4)-O(4)	1.987(5)	Mo(6)-O(3)	1.973(5)
Mo(2)-O(5)	2.042(5)	Mo(4)-O(23)#1	2.061(5)	Mo(6)-O(28)	2.062(6)
Mo(2)-O(8)#1	2.104(5)	Mo(4)-O(9)	2.097(5)	Mo(6)-O(10)	2.097(5)
Mo(2)-O(2)#1	2.300(5)	Mo(4)-O(6)#1	2.300(5)	Mo(6)-O(12)	2.272(5)
Mo(1)Mo(6)	2.5991(12)	Mo(2)Mo(4)	2.6054(10)	Mo(3)Mo(5)	2.5976(10)
Mn(1)-O(4)	2.195(5)	Mn(1)-O(3)	2.214(5)	Mn(1)-O(1)	2.221(5)
Mn(1)-O(4)#1	2.195(5)	Mn(1)-O(3)#1	2.214(5)	Mn(1)-O(1)#1	2.221(5)
Mn(2)-O(16)#2	2.165(5)	Mn(2)-O(17)#3	2.171(5)	Mn(2)-O(7W)	2.222(6)
Mn(2)-O(16)	2.165(5)	Mn(2)-O(17)#1	2.171(5)	Mn(2)-O(7W)#2	2.222(6)
Sr(1)-O(8W)	2.706(14)	Sr(1)-O(18)#3	2.596(5)	Sr(1)-O(21)	2.610(6)
Sr(1)-O(8AW)	2.377(17)	Sr(1)-O(11)	2.600(5)	Sr(1)-O(9W)	2.611(10)
Sr(1)-O(16)	2.638(5)	Sr(1)-O(10W)	2.568(8)	Sr(1)-O(17)#3	2.725(5)
P(1)-O(16)	1.509(5)	P(2)-O(17)	1.509(5)	P(3)-O(22)	1.501(6)
P(1)-O(12)	1.550(5)	P(2)-O(5)	1.535(5)	P(3)-O(24)	1.527(5)
P(1)-O(2)	1.549(5)	P(2)-O(13)	1.536(5)	P(3)-O(23)	1.529(6)
P(1)-O(6)	1.552(5)	P(2)-O(18)	1.566(5)	P(3)-O(21)	1.579(6)
P(4)-O(27)	1.505(6)	P(4)-O(28)	1.534(6)		
P(4)-O(20)	1.525(6)	P(4)-O(26)	1.562(6)		
O(30)-Mo(1)-O(8)	96.9(2)	O(25)-Mo(2)-O(8)#1	98.4(2)	O(15)-Mo(3)-O(9)#1	96.3(2)
O(19)-Mo(1)-O(8)	157.3(2)	O(7)-Mo(2)-O(8)#1	155.0(2)	O(11)-Mo(3)-O(9)#1	155.4(2)
O(3)-Mo(1)-O(8)	85.30(19)	O(4)-Mo(2)-O(8)#1	86.84(19)	O(1)-Mo(3)-O(9)#1	85.99(19)
O(13)#1-Mo(1)-O(8)	85.29(19)	O(5)-Mo(2)-O(8)#1	83.22(19)	O(24)-Mo(3)-O(9)#1	86.1(2)
O(8)-Mo(1)-O(2)	72.78(18)	O(8)#1-Mo(2)-O(2)#1	72.11(17)	O(9)#1-Mo(3)-O(6)	72.89(18)
O(14)-Mo(4)-O(9)	98.7(2)	O(31)-Mo(5)-O(10)	98.2(2)	O(29)-Mo(6)-O(10)	97.9(3)
O(7)-Mo(4)-O(9)	155.0(2)	O(11)-Mo(5)-O(10)	154.6(2)	O(19)-Mo(6)-O(10)	155.3(2)
O(4)-Mo(4)-O(9)	86.08(19)	O(1)-Mo(5)-O(10)	85.59(19)	O(3)-Mo(6)-O(10)	86.2(2)
O(23)#1-Mo(4)-O(9)	84.9(2)	O(20)-Mo(5)-O(10)	85.3(2)	O(28)-Mo(6)-O(10)	84.4(2)
O(9)-Mo(4)-O(6)#1	72.14(18)	O(10)-Mo(5)-O(12)	72.42(18)	O(10)-Mo(6)-O(12)	72.35(18)
O(4)-Mn(1)-O(1)	84.52(17)	O(3)-Mn(1)-O(1)	96.13(17)	O(1)-Mn(1)-O(1)#1	180.00
O(4)#1-Mn(1)-O(1)	95.48(17)	O(3)#1-Mn(1)-O(1)	83.87(17)		
O(16)#2-Mn(2)-O(7)	88.1(2)	O(17)#3-Mn(2)-O(7W)	91.8(2)	O(7W)-Mn(2)-O(7W)#	180.00
O(16)-Mn(2)-O(7W)	91.9(2)	O(17)#1-Mn(2)-O(7W)	88.2(2)		
O(10W)-Sr(1)-O(18)	75.3(2)	O(10W)-Sr(1)-O(9W)	129.8(3)	O(10W)-Sr(1)-O(17)#3	123.7(2)
O(10W)-Sr(1)-O(11)	85.4(2)	O(10W)-Sr(1)-O(16)	160.6(2)		
O(10W)-Sr(1)-O(21)	85.0(2)	O(10W)-Sr(1)-O(8W)	69.9(4)		

Table S2 Selected bond lengths (Å) and bond angles (°) of compound 2

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+2; #2 -x+2,-y+2,-z+2; #3 x,y+1,z

Mo(1)-O(19)	1.676(3)	Mo(3)-O(24)	1.677(3)	Mo(5)-O(29)	1.678(3)
Mo(1)-O(5)	1.951(3)	Mo(3)-O(11)	1.927(3)	Mo(5)-O(12)	1.932(3)
Mo(1)-O(1)	1.968(3)	Mo(3)-O(2)	1.970(3)	Mo(5)-O(4)	1.970(3)
Mo(1)-O(20)	2.073(3)	Mo(3)-O(14)#1	2.066(3)	Mo(5)-O(17)#1	2.034(3)
Mo(1)-O(13)	2.121(3)	Mo(3)-O(3)	2.136(3)	Mo(5)-O(3)	2.111(3)
Mo(1)-O(7)	2.251(3)	Mo(3)-O(10)#2	2.301(3)	Mo(5)-O(10)#2	2.324(3)
Mo(2)-O(22)	1.672(3)	Mo(4)-O(18)	1.678(3)	Mo(6)-O(31)	1.671(4)
Mo(2)-O(5)	1.940(3)	Mo(4)-O(12)	1.940(3)	Mo(6)-O(11)	1.937(3)
Mo(2)-O(1)	1.972(3)	Mo(4)-O(4)	1.970(3)	Mo(6)-O(2)	1.969(3)
Mo(2)-O(6)	2.060(3)	Mo(4)-O(21)#2	2.052(3)	Mo(6)-O(25)#2	2.056(3)
Mo(2)-O(9)	2.116(3)	Mo(4)-O(9)#2	2.148(3)	Mo(6)-O(13)#2	2.125(3)
Mo(2)-O(8)	2.319(3)	Mo(4)-O(8)#2	2.281(3)	Mo(6)-O(7)#2	2.282(3)
Mo(1)Mo(2)	2.6160(6)	Mo(3)Mo(6)	2.6060(6)	Mo(4)Mo(5)	2.5994(6)
Cd(1)-O(2)	2.268(3)	Cd(1)-O(4)	2.277(3)	Cd(1)-O(1)	2.293(3)
Cd(1)-O(2)#2	2.268(3)	Cd(1)-O(4)#2	2.277(3)	Cd(1)-O(1)#2	2.293(3)
Cd(2)-O(15)	2.243(3)	Cd(2)-O(5W)	2.284(4)	Cd(2)-O(30)#3	2.333(3)
Cd(2)-O(15)#3	2.243(3)	Cd(2)-O(5W)#3	2.284(4)	Cd(2)-O(30)	2.333(3)
Sr(1)-O(26)	2.402(4)	Sr(1)-O(7W)	2.497(7)	Sr(1)-O(27)	2.707(3)
Sr(1)-O(6W)	2.427(5)	Sr(1)-O(15)	2.555(3)		
Sr(1)-O(30)	2.449(4)	Sr(1)-O(5)	2.629(3)		
P(1)-O(30)	1.518(3)	P(2)-O(26)	1.513(4)	P(3)-O(15)	1.517(3)
P(1)-O(17)	1.539(4)	P(2)-O(21)	1.532(4)	P(3)-O(10)	1.539(3)
P(1)-O(27)	1.547(3)	P(2)-O(6)	1.534(3)	P(3)-O(8)	1.546(3)
P(1)-O(14)	1.550(3)	P(2)-O(23)	1.569(3)	P(3)-O(7)	1.546(3)
P(4)-O(28)	1.519(4)	P(4)-O(25)	1.522(4)	P(4)-O(20)	1.530(4)
P(4)-O(16)	1.579(4)				
O(19)-Mo(1)-O(13)	97.90(15)	O(22)-Mo(2)-O(9)	99.91(15)	O(24)-Mo(3)-O(3)	97.24(15)
O(5)-Mo(1)-O(13)	153.45(13)	O(5)-Mo(2)-O(9)	151.00(13)	O(11)-Mo(3)-O(3)	155.81(13)
O(1)-Mo(1)-O(13)	86.68(12)	O(1)-Mo(2)-O(9)	86.53(12)	O(2)-Mo(3)-O(3)	85.66(12)
O(20)-Mo(1)-O(13)	86.08(13)	O(6)-Mo(2)-O(9)	83.78(13)	O(14)#1-Mo(3)-O(3)	85.35(13)
O(13)-Mo(1)-O(7)	70.08(11)	O(9)-Mo(2)-O(8)	71.22(11)	O(3)-Mo(3)-O(10)#2	72.49(12)
O(18)-Mo(4)-O(9)#2	97.44(15)	O(29)-Mo(5)-O(3)	98.73(15)	O(31)-Mo(6)-O(13)#2	100.39(16)
O(12)-Mo(4)-O(9)#2	156.05(13)	O(12)-Mo(5)-O(3)	154.43(13)	O(11)-Mo(6)-O(13)#2	151.93(13)
O(4)-Mo(4)-O(9)#2	85.73(12)	O(4)-Mo(5)-O(3)	86.63(12)	O(2)-Mo(6)-O(13)#2	87.52(13)
O(21)#2-Mo(4)-O(9)#2	85.44(12)	O(17)#1-Mo(5)-O(3)	82.55(13)	O(25)#2-Mo(6)-O(13)#2	83.38(13)
O(9)#2-Mo(4)-O(8)#2	71.43(11)	O(3)-Mo(5)-O(10)#2	72.44(11)	O(13)#2-Mo(6)-O(7)#2	69.41(11)
O(2)-Cd(1)-O(1)	81.05(11)	O(4)-Cd(1)-O(1)	83.66(11)	O(1)-Cd(1)-O(1)#2	180.00
O(2)#2-Cd(1)-O(1)	98.95(11)	O(4)#2-Cd(1)-O(1)	96.34(11)		
O(15)-Cd(2)-O(5W)	93.79(13)	O(5W)-Cd(2)-O(30)	91.27(14)	O(5W)-Cd(2)-O(5W)#3	180.00
O(15)#3-Cd(2)-O(5W)	86.21(13)	O(5W)-Cd(2)-O(30)#3	88.73(14)		
O(26)-Sr(1)-O(6W)	80.37(15)	O(6W)-Sr(1)-O(7W)	75.9(2)	O(6W)-Sr(1)-O(5)	82.59(14)
O(6W)-Sr(1)-O(30)	127.54(15)	O(6W)-Sr(1)-O(15)	155.36(14)	O(6W)-Sr(1)-O(27)	78.11(14)

Table S3 Selected bond lengths (Å) and bond angles (°) of compound 3

Symmetry transformations used to generate equivalent atoms: #1 x,y,z+1; #2 -x,-y+1,-z+2; #3 -x,-y+1,-z+1

Mo(1)-O(4)	1.681(2)	Mo(3)-O(1)	1.672(2)	Mo(5)-O(5)	1.679(2)
Mo(1)-O(20)	1.939(2)	Mo(3)-O(12)	1.954(2)	Mo(5)-O(12)	1.954(2)
Mo(1)-O(6)	1.982(2)	Mo(3)-O(11)	1.978(2)	Mo(5)-O(11)	1.972(2)
Mo(1)-O(16)	2.028(2)	Mo(3)-O(22)	2.066(2)	Mo(5)-O(25)	2.064(2)
Mo(1)-O(7)	2.105(2)	Mo(3)-O(9)	2.093(2)	Mo(5)-O(29)	2.099(2)
Mo(1)-O(14)	2.272(2)	Mo(3)-O(8)	2.264(2)	Mo(5)-O(18)	2.268(2)
Mo(2)-O(2)	1.673(2)	Mo(4)-O(24)	1.679(2)	Mo(6)-O(3)	1.672(2)
Mo(2)-O(19)	1.948(2)	Mo(4)-O(19)	1.940(2)	Mo(6)-O(20)	1.933(2)
Mo(2)-O(10)	1.973(2)	Mo(4)-O(10)	1.978(2)	Mo(6)-O(6)	1.981(2)
Mo(2)-O(15)	2.047(2)	Mo(4)-O(23)	2.064(2)	Mo(6)-O(26)	2.061(2)
Mo(2)-O(7)	2.095(2)	Mo(4)-O(9)	2.114(2)	Mo(6)-O(29)	2.130(2)
Mo(2)-O(14)	2.290(2)	Mo(4)-O(8)	2.261(2)	Mo(6)-O(18)	2.281(2)
Mo(1)Mo(6)	2.5924(4)	Mo(2)Mo(4)	2.5967(4)	Mo(3)Mo(5)	2.6004(4)
Sr(1)-O(21)#1	2.553(2)	Sr(1)-O(19)	2.642(2)	Sr(1)-O(27)	2.762(2)
Sr(1)-O(8W)	2.571(3)	Sr(1)-O(7W)	2.692(3)	Sr(1)-O(31)#2	2.781(3)
Sr(1)-O(28)#2	2.637(2)	Sr(1)-O(10W)#1	2.719(2)	Sr(1)-O(15)	2.813(2)
Sr(2)-O(17)	2.556(2)	Sr(2)-O(12)#1	2.633(2)	Sr(2)-O(21)#1	2.640(2)
Sr(2)-O(6W)	2.593(3)	Sr(2)-O(5W)	2.681(4)	Sr(2)-O(27)	2.676(2)
Sr(2)-O(13)#1	2.612(2)	Sr(2)-O(5AW)	2.672(12)	Sr(2)-O(9W)	2.718(3)
Mn(1)-O(10)	2.179(2)	Mn(1)-O(6)	2.197(2)	Mn(1)-O(11)	2.248(2)
Mn(1)-O(10)#3	2.179(2)	Mn(1)-O(6)#3	2.197(2)	Mn(1)-O(11)#3	2.248(2)
Mn(2)-O(13)#1	2.136(2)	Mn(2)-O(27)#1	2.194(2)	Mn(2)-O(10W)	2.226(2)
Mn(2)-O(13)	2.136(2)	Mn(2)-O(27)	2.194(2)	Mn(2)-O(10W)#1	2.226(2)
P(1)-O(17)	1.522(2)	P(2)-O(13)	1.509(2)	P(3)-O(21)	1.504(2)
P(1)-O(27)	1.536(2)	P(2)-O(14)	1.540(2)	P(3)-O(25)	1.534(2)
P(1)-O(16)	1.537(2)	P(2)-O(8)	1.547(2)	P(3)-O(26)	1.543(2)
P(1)-O(15)	1.557(2)	P(2)-O(18)	1.552(2)	P(3)-O(30)	1.574(2)
P(4)-O(31)	1.503(2)	P(4)-O(23)	1.541(2)		
P(4)-O(22)	1.533(2)	P(4)-O(28)	1.568(2)		
O(4)-Mo(1)-O(7)	97.25(10)	O(2)-Mo(2)-O(7)	97.18(10)	O(1)-Mo(3)-O(9)	98.70(10)
O(20)-Mo(1)-O(7)	156.51(8)	O(19)-Mo(2)-O(7)	155.27(8)	O(12)-Mo(3)-O(9)	154.55(8)
O(6)-Mo(1)-O(7)	86.34(8)	O(10)-Mo(2)-O(7)	87.32(8)	O(11)-Mo(3)-O(9)	86.06(8)
O(16)-Mo(1)-O(7)	84.63(8)	O(15)-Mo(2)-O(7)	84.88(8)	O(22)-Mo(3)-O(9)	84.90(9)
O(7)-Mo(1)-O(14)	72.81(7)	O(7)-Mo(2)-O(14)	72.60(7)	O(9)-Mo(3)-O(8)	72.18(8)
O(24)-Mo(4)-O(8)	168.54(10)	O(5)-Mo(5)-O(29)	99.76(10)	O(3)-Mo(6)-O(29)	98.55(10)
O(19)-Mo(4)-O(8)	84.96(8)	O(12)-Mo(5)-O(29)	154.55(8)	O(20)-Mo(6)-O(29)	154.86(8)
O(10)-Mo(4)-O(8)	80.70(8)	O(11)-Mo(5)-O(29)	85.84(8)	O(6)-Mo(6)-O(29)	86.68(8)
O(23)-Mo(4)-O(8)	80.38(8)	O(25)-Mo(5)-O(29)	84.96(8)	O(26)-Mo(6)-O(29)	84.10(8)
O(9)-Mo(4)-O(8)	71.91(8)	O(29)-Mo(5)-O(18)	72.98(7)	O(29)-Mo(6)-O(18)	72.17(7)
O(21)#1-Sr(1)-O(8W)	120.69(9)	O(8W)-Sr(1)-O(7W)	140.63(10)	O(8W)-Sr(1)-O(31)#2	74.90(9)
O(8W)-Sr(1)-O(28)#2	75.98(9)	O(8W)-Sr(1)-O(10W)#1	70.26(9)	O(8W)-Sr(1)-O(15)	129.55(8)
O(8W)-Sr(1)-O(19)	70.86(8)	O(8W)-Sr(1)-O(27)	130.38(9)		
O(17)-Sr(2)-O(6W)	73.61(8)	O(6W)-Sr(2)-O(21)#1	74.74(8)	O(6W)-Sr(2)-O(5W)	81.21(12)
O(6W)-Sr(2)-O(13)#1	147.90(8)	O(6W)-Sr(2)-O(27)	113.93(8)	O(6W)-Sr(2)-O(5AW)	70.8(3)
O(6W)-Sr(2)-O(12)#1	86.82(8)	O(6W)-Sr(2)-O(9W)	140.40(9)		
O(13)#1-Mn(2)-O(10	86.46(8)	O(27)#1-Mn(2)-O(10W)	87.57(8)	O(10W)-Mn(2)-O(10W)#1	180.00
O(13)-Mn(2)-O(10W)	93.54(8)	O(27)-Mn(2)-O(10W)	92.43(8)		
O(10)-Mn(1)-O(6)	95.88(8)	O(6)-Mn(1)-O(6)#3	180.00	O(6)-Mn(1)-O(11)#3	83.54(7)
O(10)#3-Mn(1)-O(6)	84.12(7)	O(6)-Mn(1)-O(11)	96.46(7)		

Table S4 Selected bond lengths (Å) and bond angles (°) of compound 4

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1; #2 x,-y+1/2,z-1/2; #3 -x+1,-y+1,-z+1

	1	2	3	4
Mol	5.23	5.19	5.19	5.25
Mo2	5.19	5.27	5.20	5.25
Mo3	5.19	5.19	5.19	5.22
Mo4	5.25	5.21	5.17	5.20
Mo5	5.22	5.21	5.24	5.20
M06	5.26	5.26	5.25	5.09

Table S5. BVS calculations of Mo centers in compounds 1-4^a

^a $V = \sum_{i=1}^{6} \exp(\frac{r_0 - r_i}{0.37})$ ($r_0 = 1.907(2)$ Å, ref: Brown, I. D.; Altermatt, D. Acta. Crystallogr. Sect. B. **1985**, 41,

244-247).

Table S	6. BVS	calculations	of P	centers in	compo	ounds 1-4 ^a

	1	2	3	4
P1	5.09	4.91	4.95	4.95
P2	4.98	4.98	4.97	4.97
Р3	4.97	5.02	4.97	4.94
P4	4.99	5.05	5.00	4.99

^a $V = \sum_{i=1}^{4} \exp(\frac{r_0 - r_i}{0.37})$ ($r_0 = 1.617(1)$ Å, ref: Brown, I. D.; Altermatt, D. Acta. Crystallogr. Sect. B. **1985**, 41,

244-247).

Table S7-1	BVS	calculations	of Fe centers	s in con	mounds 1
	\mathbf{D}	calculations		$5 \mathrm{m}$ con	ipounds I

	$r_{\rm Fe(II)-N\ 1.761\ \text{\AA}}^{\rm a}$	$r_{\rm Fe(III)-N\ 1.815\ { m \AA}}^{ m a}$	$r_{\rm Fe(II)-O\ 1.700 {\rm \AA}^a}$	$r_{\rm Fe(III)-O\ 1.765 \text{\AA}}^{\rm a}$	average
Fe1	3.41	3.97			3.69 ^b
Fe2			1.69	2.02	1.85
Fe3			1.83	2.18	2.00

^{a.} r_0 values are originated from the ref: Liu, W.; Thorp, H. H. *Inorg. Chem.* **1993**, *32*, 4102-4105. ^{b.} The calculation result is a little deviated from the true oxidation state, but indicating that Fe1 should possesses the relatively high oxidation state (which is close to +3 oxidation state).

TIL CEADU	1 1 J	C 1	. 1	1 48
Table S/-2, BV	'S calculation	s of fransitional	metal centers in	compounds 2-4"
	o curculation	5 of transitional		

	2	3	4
Mn1/Mn2	1.81 / 1.95		
Cd1/Cd2		2.18 / 2.14	
Mn1/Mn2			1.81 / 1.93

^a
$$V = \sum_{i=1}^{6} \exp(\frac{r_0 - r_i}{0.37})$$
 (r_0 (Mn(II)-O) = 1.765(1) Å, r_0 (Mn(II)-O) = 1.904(4) Å, ref: Brown, I. D.; Altermatt, D.

Acta. Crystallogr. Sect. B. 1985, 41, 244-247).

Table S8. BVS calculations of $\{OH\}$, $\{HPO_4\}$ and $\{H_2PO_4\}$ groups in compounds 1-4^a

]	l		2		3	3		4
		O6	1.19	08	1	.17	03	1.11	07	1.18
🔕 Oa	μ-{OH}	08	1.13	09	1	.19	09	1.09	09	1.17
		O13	1.21	01	0 1	.19	013	1.11	029	1.14
		O30	1.12	02	2 1	.36	O23	1.13	O28	1.20
	{HPO4}								O31	1.36
V Ob		O23	1.32	02	6 1	.16	016	1.11		
	{112PO4}	O31	1.19	02	7 1	.36	O28	1.31		

^a $(r_0 \text{ (Mo-O)} = 1.907(2) \text{ Å}, r_0 \text{ (P-O)} = 1.617(1) \text{ Å}, r_0 \text{ (Sr-O)} = 2.118(6) \text{ Å}, \text{ ref: Brown, I. D.; Altermatt, D. Acta. Crystallogr. Sect. B.$ **1985**, 41, 244-247).

3. Physical characterization

Fig. S10 IR spectra of (a) compound 1, (b) compound 2, (c) compound (3) and (d) compound 4

Fig. S11 Solid state UV-vis spectra of (a) compound 1, (b) compound 2, (c) compound 3 and (d) compound 4

Fig. S12 TG of (a) compound 1, (b) compound 2, (c) compound 3 and (d) compound 4

Fig. S13 Cyclic voltammograms of **(a) 1-CPE**, **(b) 2-CPE**, **(c) 3-CPE**, **and (d) 4-CPE** in the 1.0 M H₂SO₄ solution at different scan rates (from inner to outer: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 mV s⁻¹). Potentials vs. SCE. (Insert plots: The dependence of anodic peak II current on scan rates.)