Supporting Information

Acentric and Chiral 4-Connected Metal-Organic Frameworks based on Racemic

Chiral Binaphthol-like Ligand of 4-(1-H(or Methyl)-imidaozol-1-yl)benzoic acid

Ke-Hui Cui, Shi-Yan Yao, Hai-Qin Li, Yan-Tao Li, Chun-Jie Jiang,* Yun-Qi Tian*

* Corresponding author. E-mail: <u>yqtian@lnnu.edu.cn</u>. jiangcj@lnnu.edu.cn</u>. Fax: 86-411-82156989. Tel: 86-411-82159141

Institute of Chemistry for Functionalized Materials, College of Chemistry and

Chemical Engineering, Liaoning Normal University, 116029 Dalian, PR CHINA.

	HIBA	HMIBA.
Formula	$C_{10}H_{11}ClN_2O_3$	$C_{11}H_{13}ClN_2O_3$
Fw	242.66	256.68
Crystal systerm	Triclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> 2 ₁ /c
<i>a</i> (Å)	7.201(2)	14.465(8)
<i>b</i> (Å)	7.382(2)	7.830(4)
<i>c</i> (Å)	11.328(3)	11.406(6)
α (deg)	77.121(3)	90
β (deg)	77.612(2)	111.139(6)
γ (deg)	75.969(3)	90
V(Å3)	561.2(6)	1205.0(11)
Ζ	2	4
D _{calcd.}	1.424	1.415
Reflections collected / unique	3495/2574	7083/2826
GOF	1.056	1.037
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0731, wR_2 = 0.2171$	$R_1 = 0.0522, wR_2 = 0.1393$

Table S1 Crystallographic Data and Structure Refinement Summary for HIBA and HMIBA

Figure S1 FT-IR of HIBA and HMIBA.

Figure S2 FT-IR of compounds 1–6.

Figure S3 PXRD patterns of compounds 1–6..

Figure S4. DTA-TGA curves of compounds 3–6

Figure S5 Crystal structures of racemic chiral ligands of HIBA and HMIBA (only a pair of enantiomers are depicted in each of the unit-cell).

Compound 1 ^{<i>a</i>}			
Zn(1)-O(1)#1	1.929(3)	Zn(1)-N(1)#3	2.020(4)
Zn(1)-O(1)#2	1.929(3)	Zn(1)–N(1)	2.020(4)
O(1)#1–Zn(1)–O(1)#2	102.4(2)	O(1)#1-Zn(1)-N(1)#3	110.02(15)
O(1)#1–Zn(1)–N(1)	117.31(14)	O(1)#2-Zn(1)-N(1)#3	117.31(14)
O(1)#2–Zn(1)–N(1)	110.02(15)	N(1)-Zn(1) -N(1)#3	100.5(2)
Compound 2 ^{<i>b</i>}			
Co(1)–O(1)#1	1.9314(19)	Co(1)–N(1)#3	2.020(2)

Table S2 Selected bond lengths (Å) and angles (°) for 1–6

Co(1)–O(1)#2	1.9314(19)	Co(1)–N(1)	2.020(2)
O(1)#1-Co(1)-O(1)#2	100.12(15)	O(1)#1-Co(1)-N(1)	118.19(9)
O(1)#1-Co(1)-N(1)#3	110.63(9)	O(1)#2-Co(1)-N(1)	110.63(9)
O(1)#2-Co(1)-N(1)#3	118.19(9)	N(1)#3-Co(1)-N(1)	100.07(13)
Compound 3 ^c			
Cd(1)–N(3)	2.242(3)	Cd(1)-O(4)#2	2.334(3)
Cd(1)–N(1)	2.262(3)	Cd(1)-O(2)#1	2.365(3)
Cd(1)-O(1)#1	2.325(2)	Cd(1)-O(3)#2	2.379(3)
N(3)–Cd(1)–N(1)	112.54(14)	O(1)#1-Cd(1)-O(2)#1	56.10(10)
N(3)-Cd(1)-O(1)#1	93.17(11)	O(4)#2-Cd(1)-O(2)#1	124.93(12)
N(1)-Cd(1)-O(1)#1	138.38(11)	N(3)-Cd(1)-O(3)#2	84.94(12)
N(3)-Cd(1)-O(4)#2	136.39(12)	N(1)-Cd(1)-O(3)#2	93.09(10)
N(1)-Cd(1)-O(4)#2	89.22(13)	O(1)#1-Cd(1)-O(3)#2	122.41(10)
O(1)#1-Cd(1)-O(4)#2	93.90(10)	O(4)#2-Cd(1)-O(3)#2	55.43(12)
N(3)-Cd(1)-O(2)#1	94.13(12)	O(2)#1-Cd(1)-O(3)#2	178.23(9)
N(1)-Cd(1)-O(2)#1	88.65(10)		
Compound 4 ^{<i>d</i>}			
Cd(1)–N(1)#1	2.253(4)	Cd(1)–O(1)#3	2.287(4)
Cd(1)–N(1)	2.253(4)	Cd(1)-O(2)#2	2.431(4)
Cd(1)-O(1)#2	2.287(4)	Cd(1)–O(2)#3	2.431(4)
N(1)#1-Cd(1)-N(1)	106.5(3)	O(1)#2-Cd(1)-O(2)#2	55.22(13)

 $N(1)\#1-Cd(1)-O(1)\#2 \qquad 96.68(16) \qquad O(1)\#3-Cd(1)-O(2)\#2 \qquad 113.36(16)$

N(1)-Cd(1)-O(1)#2	92.54(16)	N(1)#1-Cd(1)-O(2)#3	146.95(14)
N(1)#1-Cd(1)-O(1)#3	92.54(15)	N(1)-Cd(1)-O(2)#3	86.33(19)
N(1)-Cd(1)-O(1)#3	96.68(16)	O(1)#2-Cd(1)-O(2)#3	113.36(16)
O(1)#2-Cd(1)-O(1)#3	164.6(3)	O(1)#3-Cd(1)-O(2)#3	55.22(13)
N(1)#1-Cd(1)-O(2)#2	86.33(19)	O(2)#2-Cd(1)-O(2)#3	99.3(2)
N(1)-Cd(1)-O(2)#2	146.95(14)		

Compound 5 ^e			
Co(1)–O(2)#1	2.070(3)	Co(1)–N(2)#3	2.080(3)
Co(1)–O(2)#2	2.070(3)	Co(1)–O(1)#1	2.323(3)
Co(1)–N(2)	2.080(3)	Co(1)–O(1)#2	2.323(3)
O(2)#1-Co(1)-O(2)#2	163.4(2)	N(2)-Co(1)-O(1)#1	87.39(12)
O(2)#1-Co(1)-N(2)	95.55(13)	N(2)#3-Co(1)-O(1)#1	151.01(12)
O(2)#2-Co(1)-N(2)	94.18(13)	O(2)#1-Co(1)-O(1)#2	108.02(13)
O(2)#1-Co(1)-N(2)#3	94.18(13)	O(2)#2-Co(1)-O(1)#2	59.17(13)
O(2)#2-Co(1)-N(2)#3	95.55(13)	N(2)-Co(1)-O(1)#2	151.01(12)
N(2)-Co(1)-N(2)#3	107.93(18)	N(2)#3-Co(1)-O(1)#2	87.39(12)
O(2)#1-Co(1)-O(1)#1	59.17(13)	O(1)#1-Co(1)-O(1)#2	90.39(17)
O(2)#2-Co(1)-O(1)#1	108.02(13)		

Compound 6 '				
Cd(1)–N(3)	2.225(10)	Cd(1)–O(3)	2.311(6)	
Cd(1)–O(1)	2.289(5)	Cd(1)–O(2)	2.437(5)	
Cd(1)–N(1)	2.300(7)	Cd(1)–O(4)	2.448(7)	
N(3)-Cd(1)-O(1)	95.6(3)	N(1)-Cd(1)-O(2)	142.4(2)	

N(3)-Cd(1)-N(1)	106.0(3)	O(3)-Cd(1)-O(2)	104.2(2)
O(1)-Cd(1)-N(1)	93.0(2)	N(3)-Cd(1)-O(4)	151.9(3)
N(3)-Cd(1)-O(3)	96.5(3)	O(1)-Cd(1)-O(4)	108.6(3)
O(1)-Cd(1)-O(3)	157.3(2)	N(1)-Cd(1)-O(4)	87.3(3)
N(1)-Cd(1)-O(3)	101.9(2)	O(3)-Cd(1)-O(4)	56.0(2)
N(3)-Cd(1)-O(2)	97.4(3)	O(2)–Cd(1)–O(4)	85.4(3)
O(1)-Cd(1)-O(2)	55.23(19)		

^{*a*}Symmetry transformations used to generate equivalent atoms:

#1 -x-1,y-1,-z #2 x+1,y-1,z #3 -x,y,-z #4 x-1,y+1,z

^bSymmetry transformations used to generate equivalent atoms:

^cSymmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+3,z #2 -x+1,-y+1,z-1/2 #3 x+1/2,-y+3,z #4 -x+1,-y+1,z+1/2

^dSymmetry transformations used to generate equivalent atoms:

#1 y,x,-z+1 #2 x-1/2,-y+3/2,-z #3 -y+3/2,x-1/2,z+1 #4 y+1/2,-x+3/2,z-1

^eSymmetry transformations used to generate equivalent atoms:

#1 -y+1/2,x+1/2,z+1 #2 x+1/2,-y+1/2,-z #3 y,x,-z+1 #4 y-1/2,-x+1/2,z-1

^{*f*}Symmetry transformations used to generate equivalent atoms:

#1 -x+3/2,y+1/2,z #2 -x+5/2,y+0,z-1/2 #3 -x+3/2,y-1/2,z #4 -x+5/2,y+0,z+1/2