Electronic Supplementary Information

## Metallomacrocycle or coordination polymer: Spacer-directed self-assembly of transition-metal complexes based on flexible bis(benzotriazole) ligands

Xiao-Liang Tang, Wei Dou, Ji-an Zhou, Guo-Lin Zhang, Wei-Sheng Liu,\* Li-Zi Yang and Yong-Liang Shao

Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

\* Corresponding author : E-mail: liuws@lzu.edu.cn Fax: +86-931-8912582; Tel: +86-931-8915151;

## Contents

Table S1 Selected bond lengths (Å), angles (°) and weak interaction for complex 1; Table S2 Selected bond lengths (Å), angles (°) and weak interaction for complex 2; Table S3 Selected bond lengths (Å), angles (°) and weak interaction for complex 3; Table S4 Selected bond lengths (Å), angles (°) and weak interaction for complex 4; Table S5 Selected bond lengths (Å), angles (°) and weak interaction for complex 5; Table S6 Selected bond lengths (Å), angles (°) and weak interaction for complex 5; Table S6 Selected bond lengths (Å), angles (°) and weak interaction for complex 6; Fig. S1 IR of the ligands L<sup>1</sup>, L<sup>2</sup> and L<sup>3</sup>;

Fig. S2 IR of the complexes 1–6.

## Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

| Ag(1)-O(1)                   | 2.578(3)                | Ag(1)-N(8             | 8)                          | 2.553(4)             |  |
|------------------------------|-------------------------|-----------------------|-----------------------------|----------------------|--|
| Ag(1)-N(1)                   | 2.247(3)                | Ag(1)-N(4             | $(4)^i$                     | 2.213(3)             |  |
| O(1)-Ag(1)-N(1)              | 81.42(10)               | N(1)-Ag(1             | 1)-N(8)                     | 91.61(14)            |  |
| O(1)-Ag(1)-N(8)              | 136.75(18)              | N(1)-Ag(1             | 1)-N(4) <sup><i>i</i></sup> | 151.17(11)           |  |
| $O(1)-Ag(1)-N(4)^{i}$        | 107.84(10)              | N(8)-Ag(1             | 1)-N(4) <sup><i>i</i></sup> | 98.65(15)            |  |
| N(3)-C(7)-C(8)-N(6)          |                         | -61.6(4)              |                             |                      |  |
| D–H···A                      | d(D–H)                  | d(H···A)              | d(D···A)                    | ∠(D–H…A)             |  |
| $C(8)-H(8A)\cdots O(1)^{ii}$ | 0.97                    | 2.38                  | 3.307(5)                    | 160                  |  |
| $C(8)-H(8B)-O(3)^{iii}$      | 0.97                    | 2.37                  | 3.292(5)                    | 158                  |  |
| $C(15)-H(15C)\cdots N(5)$    | <sup>iv</sup> 0.96      | 2.61                  | 3.353(6)                    | 134                  |  |
|                              | $\pi \cdots \pi$ Intera | ctions Face-to-H      | Face                        |                      |  |
| Cg(a)-Cg(b)                  | dihedra                 | al angle $(a,b)$ (°)  | Ring Centroids Distance (Å) |                      |  |
| $Cg(1)-Cg(1)^{\nu}$          | 0                       |                       | 3.5396(17)                  |                      |  |
| $Cg(1)-Cg(2)^{\nu}$          | 0.99                    |                       | 3.6840(1                    | 9)                   |  |
| Symmetry codes: i) x,        | -1+y, z; ii) 2-x        | x, 2-y, 2-z; iii) 1+z | x, 1+y, z; iv               | v) 2-x, 2-y, 1-z; v) |  |
| 2-x 3-y 2-7 Ring Co          | $(1) \cdot N(4) - N(5)$ | -N(6)-C(14)-C(9)      | )). Ring Co                 | r(7)·                |  |

 Table S1 Selected bond lengths (Å), angles (°) and weak interaction for complex 1

2-x, 3-y, 2-z; Ring Cg(1): N(4)-N(5)-N(6)-C(14)-C(9); Ring Cg(2):

C(9)-C(10)-C(11)-C(12)-C(13)-C(14).

|                                                      | - · · ·                      |                               |                          | -          |  |  |
|------------------------------------------------------|------------------------------|-------------------------------|--------------------------|------------|--|--|
| Ag(1)-N(1)                                           | 2.243(5)                     | Ag(1)-N                       | $(1)^{ii}$ 2             | 2.243(9)   |  |  |
| $Ag(1)-N(1)^{i}$                                     | 2.243(8) $Ag(1)-Ag(1)^{iii}$ |                               |                          | 3.186(1)   |  |  |
| $N(1)-Ag(1)-N(1)^{i}$                                | 120.0(3)                     | N(1)-Ag                       | 88.95(13)                |            |  |  |
| $N(1)-Ag(1)-N(1)^{ii}$                               | 120.0(2)                     | $N(1)^i$ -Ag                  | $g(1)$ -Ag $(1)^{iii}$ 8 | 88.95(13)  |  |  |
| $N(1)^{i}$ -Ag(1)-N(4) <sup><i>ii</i></sup>          | 120.0(3)                     | N(1) <sup><i>ii</i></sup> - A | .g(1)- 8                 | 88.95(13)  |  |  |
| $\operatorname{Ag}(1)^{iii}$                         |                              |                               |                          |            |  |  |
| N(3)-C(7)-C(8)-O(1) -68.1(1)                         |                              |                               |                          |            |  |  |
| D–H···A                                              | d(D–H)                       | d(H···A)                      | d(D····A)                |            |  |  |
|                                                      |                              |                               |                          | 2(D–H···A) |  |  |
| $C(3)-H(3)\cdots N(2)^{i}$                           | 0.93                         | 2.59                          | 3.491(11)                | 163        |  |  |
| $C(6)-H(6)\cdots O(2)^{iv}$                          | 0.93                         | 2.36                          | 3.219(10)                | 153        |  |  |
| $C(7)$ – $H(7A)$ ···O(2) <sup><math>\nu</math></sup> | 0.97                         | 2.57                          | 3.214(9)                 | 124        |  |  |
| $C(8)$ – $H(8B)$ ···· $O(2)^{\nu}$                   | 0.97                         | 2.45                          | 2.947(13)                | 111        |  |  |
| $\pi \cdots \pi$ Interactions Face-to-Face           |                              |                               |                          |            |  |  |

 Table S2 Selected bond lengths (Å), angles (°) and weak interaction for complex 2

| Cg(a)–Cg(b)            | dihedral angle (a,b) (°) | Ring Centroids Distance (Å) |
|------------------------|--------------------------|-----------------------------|
| $Cg(1)$ – $Cg(2)^{vi}$ | 10.23                    | 3.968(4)                    |
| $Cg(2)-Cg(2)^{vi}$     | 11.20                    | 3.663(4)                    |

Symmetry codes: i) 1-y, 1+x-y, z; ii) -x+y, 1-x, z; iii) -1/3+y, 1/3+x, 5/6-z; iv) 1+x-y, 1+x, 1-z; v) 1-x, 2-y, 1-z; vi) 2/3-x, 1/3-x+y, 5/6-z; Ring Cg(1): N(1)-N(2)-N(3)-C(1)-C(2); Cg(2): C(1)-C(2)-C(3)-C(4)-C(5)-C(6).

| Ag(1)-O(3)                                                                                    | 2.424(2)                   | Ag(1)-O(1            | $(3)^{i}$       | 2.590(2)             |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------|----------------------|-----------------|----------------------|--|--|--|
| Ag(1)-N(1)                                                                                    | 2.199(2)                   | Ag(1)-N(             | $6)^{ii}$       | 2.217(2)             |  |  |  |
| O(3)-Ag(1)-N(1)                                                                               | 112.18(7)                  | N(1)-Ag(             | 1)- $O(3)^{i}$  | 105.78(7)            |  |  |  |
| $O(3)-Ag(1)-O(3)^{i}$                                                                         | 75.99(7)                   | N(1)-Ag(             | $1)-N(6)^{ii}$  | 134.41(7)            |  |  |  |
| $O(3)-Ag(1)-N(6)^{ii}$                                                                        | 109.14(7)                  | $O(3)^i$ -Ag         | $(1)-N(6)^{ii}$ | 102.05(7)            |  |  |  |
| $Ag(1)-O(3)-Ag(1)^{i}$                                                                        | 104.01(7)                  |                      |                 |                      |  |  |  |
| N(3)-C(7)-C(8)-O(1)                                                                           |                            | -67.5(3)             |                 |                      |  |  |  |
| O(2)-C(11)-C(12)-N(                                                                           | (4)                        | -62.8(3)             |                 |                      |  |  |  |
| D–H···A                                                                                       | d(D–H)                     | d(H···A)             | d(D - A)        | ∠(D–H…A)             |  |  |  |
| C(8)–H(8B)····O(2)                                                                            | 0.97                       | 2.36                 | 3.016(3)        | 125                  |  |  |  |
| C(12)-H(12B)···O(3)                                                                           | <sup><i>iii</i></sup> 0.97 | 2.54                 | 3.447(3)        | 156                  |  |  |  |
| $C(14)-H(14)\cdots O(5)^{iii}$                                                                | 0.93                       | 2.57                 | 3.499(4)        | 176                  |  |  |  |
|                                                                                               | $\pi \cdots \pi$ Intera    | ctions Face-to-I     | Face            |                      |  |  |  |
| Cg(a)-Cg(b)                                                                                   | dihedra                    | al angle $(a,b)$ (°) | Ring Cer        | ntroids Distance (Å) |  |  |  |
| $Cg(1)-Cg(1)^{iv}$                                                                            | 0                          |                      | 3.5487(1        | 8)                   |  |  |  |
| $Cg(1)-Cg(2)^{iv}$                                                                            | 0.96                       |                      | 3.7593(19)      |                      |  |  |  |
| $Cg(2)-Cg(3)^{\nu}$                                                                           | 25.87                      |                      | 3.991(2)        |                      |  |  |  |
| Symmetry codes: i) -1-x, 2-y, 2-z; ii) -x, 2-y, 2-z; iii) -x, 1-y, 2-z; iv) 1-x, 1-y, 2-z; v) |                            |                      |                 |                      |  |  |  |
| -x, -1/2+y, 3/2-z; Ring Cg(1): N(4)–N(5)–N(6)–C(18)–C(13); Cg(2):                             |                            |                      |                 |                      |  |  |  |

Table S3 Selected bond lengths (Å), angles ( $^{\circ}$ ) and weak interaction for complex 3

C(13)-C(14)-C(15)-C(16)-C(17)-C(18); Cg(3): C(1)-C(2)-C(3)-C(4)-C(5)-C(6).

Table S4 Selected bond lengths (Å), angles (°) and weak interaction for complex 4

| Cu(1)-Cl(1)                                | 2.2311(13) | Cu(1)-N(1      | )                           | 1.987(3)   |  |  |  |
|--------------------------------------------|------------|----------------|-----------------------------|------------|--|--|--|
| Cu(1)-Cl(2)                                | 2.2064(16) | Cu(1)-N(4      | $)^i$                       | 1.985(3)   |  |  |  |
| Cl(1)-Cu(1)-Cl(2)                          | 156.24(6)  | Cl(2)-Cu(2     | l)-N(1)                     | 90.85(10)  |  |  |  |
| Cl(1)-Cu(1)-N(1)                           | 92.90(10)  | Cl(2)-Cu(1     | 1)-N(4) <sup><i>i</i></sup> | 91.96(10)  |  |  |  |
| $Cl(1)-Cu(1)-N(4)^{i}$                     | 93.18(9)   | N(1)-Cu(1      | $)-N(4)^{i}$                | 158.19(13) |  |  |  |
| N(3)-C(7)-C(8)-N(6)                        | 63.5(4)    |                |                             |            |  |  |  |
| D–H···A                                    | d(D–H)     | d(H···A)       | d(D - A)                    | ∠(D–H…A)   |  |  |  |
| C(7)–H(7B)····Cl(1) <sup><i>ii</i></sup>   | 0.97       | 2.75           | 3.716(4)                    | 173        |  |  |  |
| C(8)- $H(8A)$ ···N(5) <sup>iii</sup>       | 0.97       | 2.45           | 3.347(5)                    | 153        |  |  |  |
| $\pi \cdots \pi$ Interactions Face-to-Face |            |                |                             |            |  |  |  |
| Cg(a)-Cg(b)                                | dihedral a | ngle (a,b) (°) | Ring Centroids Distance (Å) |            |  |  |  |
| $Cg(1)-Cg(1)^{ii}$                         | 0.03       |                | 3.681(2)                    |            |  |  |  |
| $Cg(1)-Cg(2)^{ii}$                         | 3.81       |                | 3.916(2)                    |            |  |  |  |
| $Cg(2)-Cg(3)^{iv}$                         | 26.66      |                | 3.798(3)                    |            |  |  |  |
| $Cg(3)-Cg(3)^{\nu}$                        | 0          |                | 3.865(3)                    |            |  |  |  |

Symmetry codes: i) x, 1+y, z; ii) -x, 2-y, -z; iii) 1-x, 1-y, -z; iv) x, y, z; v) 1-x, 1-y, 1-z; Ring Cg(1): N(1)–N(2)–N(3)–C(6)–C(1); Ring Cg(2): C(1)–C(2)–C(3)–C(4)–C(5)–C(6); Ring Cg(3): C(9)–C(10)–C(11)–C(12)–C(13)–C(14).

| Cu(1)-Cl(1)                                                                                    | 2.5334(8)                | Cu(1)-N(             | (1)                                  | 2.007(2)          |  |  |  |
|------------------------------------------------------------------------------------------------|--------------------------|----------------------|--------------------------------------|-------------------|--|--|--|
| Cu(1)- $Cl(2)$                                                                                 | 2.2749(9)                | Cu(1)-N(             | $(4)^{i}$                            | 2.006(2)          |  |  |  |
| $Cu(1)$ - $Cl(1)^i$                                                                            | 2.3782(8)                |                      |                                      |                   |  |  |  |
| Cl(1)-Cu(1)-Cl(2)                                                                              | 117.20(3)                | Cl(1)-Cu             | $(1)-N(4)^{i}$                       | 93.97(7)          |  |  |  |
| Cl(1)-Cu(1)-N(1)                                                                               | 93.57(7)                 | $Cl(1)^{i}$ -Cu      | (1)-Cl(2)                            | 152.58(3)         |  |  |  |
| $Cl(1)-Cu(1)-Cl(1)^{i}$                                                                        | 90.19(3)                 | Cl(2)-Cu             | $(1)-N(4)^{i}$                       | 89.13(7)          |  |  |  |
| Cl(2)-Cu(1)-N(1)                                                                               | 88.80(7)                 | N(1)-Cu(             | $(1)-N(4)^{i}$                       | 172.30(10)        |  |  |  |
| $Cl(1)^{i}$ -Cu(1)-N(1)                                                                        | 90.73(7)                 | Cu(1)                |                                      | 89.81(3)          |  |  |  |
| $Cl(1)^{i}-Cu(1)-N(4)^{i}$                                                                     | 87.70(7)                 | -Cl(1)-Cu            | $\mathfrak{u}(1)^i$                  |                   |  |  |  |
|                                                                                                |                          |                      |                                      |                   |  |  |  |
| N(3)-C(7)-C(8)-O(1                                                                             | )                        | 67.4(3)              |                                      |                   |  |  |  |
| O(1)-C(9)-C(10)-N(                                                                             | 6)                       | -62.0(3)             |                                      |                   |  |  |  |
| D–H···A                                                                                        | d(D–H)                   | d(H…A)               | d(D…A)                               | ∠(D–H…A)          |  |  |  |
| $C(7)-H(7B)-O(1)^{ii}$                                                                         | 0.97                     | 2.57                 | 3.524(4)                             | 166               |  |  |  |
| C(10)-H(10B)····N(5                                                                            | $0^{iii}$ 0.97           | 2.50                 | 3.423(4)                             | 159               |  |  |  |
| $C(14)-H(14)\cdots Cl(1)$                                                                      | <sup>iv</sup> 0.93       | 2.79                 | 3.676(4)                             | 160               |  |  |  |
| $C(15)-H(15)\cdots Cl(1)$                                                                      | <sup><i>i</i></sup> 0.93 | 2.78                 | 3.407(3)                             | 126               |  |  |  |
| $\pi \cdots \pi$ Interactions Face-to-Face                                                     |                          |                      |                                      |                   |  |  |  |
| Cg(a)-Cg(b)                                                                                    | dihedra                  | al angle $(a,b)$ (°) | (a,b) (°) Ring Centroids Distance (Å |                   |  |  |  |
| $Cg(1)-Cg(2)^{\nu}$                                                                            | 14.12                    |                      | 3.9141(1                             | 5)                |  |  |  |
| $Cg(1)-Cg(3)^{\nu}$                                                                            | 13.33                    |                      | 3.8316(1                             | 7)                |  |  |  |
| $Cg(2)-Cg(3)^{vi}$                                                                             | 0.84                     |                      | 3.6717(16)                           |                   |  |  |  |
| $Cg(4)$ – $Cg(4)^{vii}$                                                                        | 0.03                     |                      | 3.8546(18)                           |                   |  |  |  |
| $Cg(3)-Cg(4)^{\nu}$                                                                            | 13.79                    |                      | 3.8375(17)                           |                   |  |  |  |
| $Cg(3)-Cg(3)^{vi}$                                                                             | 0 3.7242(17)             |                      |                                      |                   |  |  |  |
| Symmetry codes: i) 2-x, -y, -z; ii) 1-x, 1-y, 1-z; iii) 2-x, 1-y, -z; iv) -1+x, y, z; v) x, y, |                          |                      |                                      |                   |  |  |  |
| z; vi) 1-x, 1-y, -z; vii                                                                       | ) 1-x, -y, 1-z; Ri       | ing Cg(1): N(1)-     | N(2)–N(3)–                           | C(6)-C(1); Cg(2): |  |  |  |

 Table S5 Selected bond lengths (Å), angles (°) and weak interaction for complex 5

Symmetry codes: i) 2-x, -y, -z; ii) 1-x, 1-y, 1-z; iii) 2-x, 1-y, -z; iv) -1+x, y, z; v) x, y, z; vi) 1-x, 1-y, -z; vii) 1-x, -y, 1-z; Ring Cg(1): N(1)–N(2)–N(3)–C(6)–C(1); Cg(2): N(4)–N(5)–N(6)–C(11)–C(16); Cg(3): C(11)–C(12)–C(13)–C(14)–C(15)–C(16); Cg(4): C(1)–C(2)–C(3)–C(4)–C(5)–C(6).

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

| Cu(1)-Cl(1)                                | 2.2                      | .86(3)    |                         | Cu(2)-Cl(3        | )                    | 2.24       | 5(3)       |  |
|--------------------------------------------|--------------------------|-----------|-------------------------|-------------------|----------------------|------------|------------|--|
| Cu(1)- $Cl(2)$                             | 2.4370(19)               |           |                         | Cu(2)-Cl(4)       |                      | 2.2937(19) |            |  |
| Cu(1)-O(5)                                 | 2.090(7)                 |           |                         | Cu(2)-O(6)        |                      | 2.340(6)   |            |  |
| Cu(1)-N(1)                                 | 1.999(5)                 |           |                         | Cu(2)-N(6)        | 1                    | 2.035(6)   |            |  |
| Cu(1)-N(12)                                | 1.9                      | 97(6)     |                         | Cu(2)-N(7)        |                      | 2.045(6)   |            |  |
| Cl(1)-Cu(1)-Cl(2)                          | 12                       | 0.12(10)  |                         | Cl(3)-Cu(2)-Cl(4) |                      | 148.29(11) |            |  |
| Cl(1)-Cu(1)-O(5)                           | 144                      | 4.2(2)    |                         | Cl(3)-Cu(2)-O(6)  |                      | 103.       | 03(16)     |  |
| Cl(1)-Cu(1)-N(1)                           | 89.                      | 7(2)      |                         | Cl(3)-Cu(2)-N(6)  |                      | 91.71(19)  |            |  |
| Cl(1)-Cu(1)-N(12)                          | 88.                      | .8(2)     |                         | Cl(3)-Cu(2)-N(7)  |                      | 92.5(2)    |            |  |
| Cl(2)-Cu(1)-O(5)                           | 95.                      | .7(2)     |                         | Cl(4)-Cu(2)-O(6)  |                      | 108.       | 108.66(16) |  |
| Cl(2)-Cu(1)-N(1)                           | 93.                      | 0(2)      |                         | Cl(4)-Cu(2        | )-N(6)               | 90.0       | 0(19)      |  |
| Cl(2)-Cu(1)-N(12)                          | 90.                      | .7(2)     |                         | Cl(4)- $Cu(2)$    | )-N(7)               | 90.7       | 6(19)      |  |
| O(5)-Cu(1)-N(1)                            | 88.                      | 3(3)      |                         | O(6)-Cu(2)-N(6)   |                      | 84.9(2)    |            |  |
| O(5)-Cu(1)-N(12)                           | 90.                      | .9(3)     |                         | O(6)-Cu(2)-N(7)   |                      | 86.1(2)    |            |  |
| N(1)-Cu(1)-N(12)                           | (1)-Cu(1)-N(12) 176.3(3) |           | N(6)-Cu(2)-N(7)         |                   |                      | 170.7(3)   |            |  |
| N(3)-C(7)-C(8)-O(1)                        |                          | -71.0(10) |                         |                   |                      |            |            |  |
| N(9)-C(25)-C(26)-O(3)                      |                          |           | -68.7(8)                |                   |                      |            |            |  |
| O(4)-C(29)-C(30)-N(10)                     |                          | 1         | 65.7(7)                 |                   |                      |            |            |  |
| O(2)-C(11)-C(12)-N(4)                      |                          | 65.4(10)  |                         |                   |                      |            |            |  |
| D–H···A                                    |                          | d(D–H)    | d(l                     | H····A)           | d(D - A)             |            | ∠(D–H…A)   |  |
| $C(7)-H(7B)\cdots Cl(2)^{i}$               |                          | 0.97      | 2.7                     | 70                | 3.523(8)             |            | 143        |  |
| C(11)-H(11B)····Cl(3                       | $)^{ii}$                 | 0.97      | 2.7                     | 79                | 3.538(10)            |            | 134        |  |
| C(12)-H(12B)····O(2)                       | $)^i$                    | 0.97      | 2.5                     | 53                | 3.500(11             |            | 171        |  |
| C(25)-H(25B)···Cl(2                        | $)^{i}$                  | 0.97      | 2.69 3                  |                   | 3.562(7)             |            | 150        |  |
| $C(29)-H(29B)\cdots Cl(3)^{ii}$            |                          | 0.97      | 2.77 3.560(             |                   | 3.560(8)             |            | 139        |  |
| C(30)-H(30A)···Cl(4                        | $)^{i}$                  | 0.97      | 2.78 3.667              |                   | 3.667(7)             |            | 152        |  |
| C(37)–H(37)···N(11)                        |                          | 0.93      | 2.50 3.076(14           |                   | )                    | 120        |            |  |
| C(42)–H(42A)···O(6)                        |                          | 0.96      | 2.45 2.817(1            |                   | 2.817(12             | )          | 103        |  |
| $\pi \cdots \pi$ Interactions Face-to-Face |                          |           |                         |                   |                      |            |            |  |
| Cg(a)–Cg(b) dihedral a                     |                          | ingle     | ngle (a,b) (°) Ring Cer |                   | ntroids Distance (Å) |            |            |  |
| $Cg(1)-Cg(5)^{iii}$ 1.1                    |                          | 1.14      |                         |                   | 3.668(5)             |            |            |  |
| $Cg(2)-Cg(6)^{iii}$ 0.64                   |                          | 0.64      |                         | 3.840(4)          |                      |            |            |  |
| $Cg(3)-Cg(8)^{iv}$ 0.81                    |                          |           |                         | 3.784(5)          |                      |            |            |  |
| $Cg(4)-Cg(7)^{iv}$                         |                          | 0.20      |                         |                   | 3.722(5)             |            |            |  |

Table S6 Selected bond lengths (Å), angles (°) and weak interaction for complex 6

Symmetry codes: i) x, 1/2-y, -1/2+z; ii) x, 1/2-y, 1/2+z; iii) x, 1/2-y, -1/2+z; iv) 1/2-x, -y, -1/2+z; Ring Cg(1): N(1)–N(2)–N(3)–C(6)–C(1); Ring Cg(2): N(4)–N(5)–N(6)–C(18)–C(13); Ring Cg(3): N(7)–N(8)–N(9)–C(24)–C(19); Ring Cg(4): N(10)–N(11)–N(12)–C(36)–C(31); Ring Cg(5): C(1)–C(2)–C(3)–C(4)–C(5)–C(6); Ring Cg(6): C(13)–C(14)–C(15)–C(16)–C(17)–C(18); Ring Cg(7): C(19)–C(20)–C(21)–C(22)–C(23)–C(24); Cg(8): C(31)–C(32)–C(33)–C(34)–C(35)–C(36). Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011



Fig. S1 IR of the ligands  $L^1$ ,  $L^2$  and  $L^3$ 





Ligand L<sup>2</sup>

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011





Fig. S2 IR of the complexes 1–6.







**Complex 2** 



**Complex 3** 



**Complex 4** 



**Complex 5** 



**Complex 6**