Supporting Information

From ladder, net to framework: coordination polymers based on Zn(II)/Cd(II) ions and mixed bicarboxyl- and bipyridine-containing linear ligands

Xin Wang,^{*a*} Wei Yao,^{*a*} Yan-Fei Qi,^{*b*} Ming-Fa Luo,^{*a*} Yong-Hui Wang,^{**a*} Hong-Wei Xie,^{*a*} Yang Yu,^{*a*} Rui-Ying Ma^{*a*} and Yang-Guang Li^{**a*}

1. Additional Structural Figures

Fig. S1. ORTEP view of the basic unit in compound **1** with thermal ellipsoids of 50%. H atoms are omitted for clarity. The symmetry transformations for O3', O4', and N2' are -x+1,-y+1,-z+1.

Fig. S2. The coordination modes of organic linear ligands in compound 1: (a) bpp; (b) chdc.

Fig. S3 Packing arrangements of compound 1 viewed along (a) *c* axis and (b) *b* axis. The solvent water molecules are omitted for clarity.

Fig. S4 (a) The hydrogen bonding interactions among {H₂O}₁₂ clusters and the mesh unit of the 1-D chain in 1; (b) View of the hydrogen bonding interactions between two adjacent {H₂O}₁₂ clusters.

Fig. S5. (a) ORTEP view of the basic unit in compound 2 with thermal ellipsoids of 50%. H atoms are omitted for clarity. The symmetry transformations for O1', O2', O3' and O4' are x, y, z-1, for N1'' is x,-y+1/2,z. (b) The disordered chdc ligand in compound 2, possessing two possible positions with the occupancies of 50% for each part.

Fig. S6. The coordination modes of organic linear ligands in compound 2: (a) chdc; (b) bpmp.

Fig. S7. Packing arrangements of compound 2 viewed along (a) c axis and (b) b axis.

Fig. S8 The weak intermolecular forces between two adjacent layers in **2** with the close distance of O(1)...C(12) 3.26 Å.

Fig. S9. ORTEP view of the basic unit in compound **3** with thermal ellipsoids of 50%. H atoms are omitted for clarity. The symmetry transformations for N1', O1' and O2' are -x+1,y,-z+1/2, for O5", O6" and O1W" are -x+2,y,-z+1/2.

Fig. S10. The coordination modes of organic linear ligands in compound 3: (a) chdc; (b) bpmp.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

Fig. S11. The packing arrangement of compound 3 viewed along *b* axis.

Fig. S12. The hydrogen bonding interactions between two adjacent layers in **3** with the close distance of O(1W)...O(5) 2.81 Å.

Fig. S13 ORTEP view of the basic unit in compound **4** with thermal ellipsoids of 50%. H atoms are omitted for clarity. The symmetry transformations for O4' and O3' are x,-y+2,z-1/2, for O3'' are -x+1,-y+2,-z+1, and for O1' and O6' are -x+1,y,-z+1/2.

Fig. S14 The coordination modes of organic linear ligands in compound 4: (a) tp; (b) bpp.

Fig. S15. The arrangement of "guest" solvent DMF and water molecules in one unit of the 3-D open framework of 4: (a) top view and (b) side-view of the 3-D open framework unit.

2. Additional Tables of Selected bond lengths and angles as well as H-bonds

Table S1 Selected bond lengths and angles of compounds $1 - 4$					
1					
Zn(1)-O(1)	1.950(2)	O(1)-Zn(1)-N(1)	103.64(8)		
Zn(1)-O(4)A	1.956(2)	O(4)A-Zn(1)-N(1)	114.59(9)		
Zn(1)-N(1)	2.047(2)	O(1)-Zn(1)-N(2)	108.54(9)		
Zn(1)-N(2)	2.053(2)	O(4)A-Zn(1)-N(2)	104.56(9)		
O(1)-Zn(1)-O(4)A	121.17(9)	N(1)-Zn(1)-N(2)	102.84(8)		
2					
Zn(1)-O(3)A	1.920(6)	O(3)B-Zn(1)-O(2)	106.3(2)		
Zn(1)-O(3)B	1.920(6)	O(3)A-Zn(1)-N(1)	97.89(19)		
Zn(1)-O(2)	1.927(4)	O(3)B-Zn(1)-N(1)	118.7(2)		
Zn(1)-N(1)	2.070(3)	O(2)-Zn(1)-N(1)	113.14(10)		
Zn(1)-N(1)C	2.070(3)	O(3)A-Zn(1)-N(1)C	118.7(2)		
O(3)-Zn(1)E	1.920(6)	O(3)B-Zn(1)-N(1)C	97.89(19)		
O(3)A-Zn(1)-O(3)B	24.6(3)	O(2)-Zn(1)-N(1)C	113.14(10)		
O(3)A-Zn(1)-O(2)	106.3(2)	N(1)-Zn(1)-N(1)C	106.84(17)		
3					
Cd(1)-O(1W)	2.246(2)	O(1W)-Cd(1)-O(5)	95.05(8)		
Cd(1)-O(1W)A	2.246(2)	O(1W)A-Cd(1)-O(5)	154.01(7)		
Cd(1)-O(6)A	2.264(2)	O(6)A-Cd(1)-O(5)	103.42(8)		
Cd(1)-O(6)	2.264(2)	O(6)-Cd(1)-O(5)	56.28(7)		
Cd(1)-O(5)A	2.406(2)	O(5)A-Cd(1)-O(5)	96.65(10)		
Cd(1)-O(5)	2.406(2)	O(1)B-Cd(2)-O(1)	91.52(11)		
Cd(2)-O(1)B	2.290(2)	O(1)B-Cd(2)-N(1)	97.87(8)		
Cd(2)-O(1)	2.290(2)	O(1)-Cd(2)-N(1)	126.84(8)		
Cd(2)-N(1)	2.295(2)	O(1)B-Cd(2)-N(1)B	126.84(8)		
Cd(2)-N(1)B	2.295(2)	O(1)-Cd(2)-N(1)B	97.87(8)		
Cd(2)-O(2)B	2.420(2)	N(1)-Cd(2)-N(1)B	116.28(13)		

Cd(2)-O(2)	2.420(2)	O(1)B-Cd(2)-O(2)B	55.45(7)
O(1W)-Cd(1)-O(1W)A	84.18(12)	O(1)-Cd(2)-O(2)B	138.21(8)
O(1W)-Cd(1)-O(6)A	98.40(8)	N(1)-Cd(2)-O(2)B	86.28(8)
O(1W)A-Cd(1)-O(6)A	102.38(8)	N(1)B-Cd(2)-O(2)B	85.98(8)
O(1W)-Cd(1)-O(6)	102.38(8)	O(1)B-Cd(2)-O(2)	138.21(8)
O(1W)A-Cd(1)-O(6)	98.40(8)	O(1)-Cd(2)-O(2)	55.45(7)
O(6)A-Cd(1)-O(6)	151.88(11)	N(1)-Cd(2)-O(2)	85.98(8)
O(1W)-Cd(1)-O(5)A	154.01(7)	N(1)B-Cd(2)-O(2)	86.28(8)
O(6)A-Cd(1)-O(5)A	56.28(7)	O(2)B-Cd(2)-O(2)	165.30(11)
O(6)-Cd(1)-O(5)A	103.42(8)		
4			
Cd(1)-O(4)A	2.258(4)	O(4)A-Cd(1)-O(6)	85.09(14)
Cd(1)-N(1)	2.328(5)	N(1)-Cd(1)-O(6)	96.47(15)
Cd(1)-N(2)	2.333(5)	N(2)-Cd(1)-O(6)	143.41(15)
Cd(1)-O(5)	2.346(4)	O(2)-Cd(1)-O(6)	129.73(13)
Cd(1)-O(2)	2.357(4)	O(4)A-Cd(1)-O(1)	89.14(14)
Cd(1)-O(6)	2.483(4)	N(1)-Cd(1)-O(1)	90.68(15)
Cd(1)-O(1)	2.507(4)	N(2)-Cd(1)-O(1)	139.59(15)
Cd(2)-O(3)B	2.211(4)	O(5)-Cd(1)-O(1)	129.76(12)
Cd(2)-O(3)A	2.211(4)	O(6)-Cd(1)-O(1)	76.05(12)
Cd(2)-O(6)C	2.306(4)	O(3)B-Cd(2)-O(3)A	97.9(2)
Cd(2)-O(6)	2.306(4)	O(3)B-Cd(2)-O(6)C	89.40(15)
Cd(2)-O(1)C	2.376(3)	O(3)A-Cd(2)-O(6)C	169.87(14)
Cd(2)-O(1)	2.376(3)	O(3)B-Cd(2)-O(6)	169.87(14)
O(3)-Cd(2)B	2.211(4)	O(3)A-Cd(2)-O(6)	89.40(15)
O(4)-Cd(1)D	2.258(4)	O(6)C-Cd(2)-O(6)	84.3(2)
O(4)A-Cd(1)-N(1)	178.34(16)	O(3)B-Cd(2)-O(1)C	91.14(14)
O(4)A-Cd(1)-N(2)	87.25(16)	O(3)A-Cd(2)-O(1)C	90.72(14)
N(1)-Cd(1)-N(2)	91.82(18)	O(6)C-Cd(2)-O(1)C	82.04(13)

O(4)A-Cd(1)-O(5)	92.32(15)	O(6)-Cd(2)-O(1)C	95.85(13)
N(1)-Cd(1)-O(5)	89.06(15)	O(3)B-Cd(2)-O(1)	90.72(14)
N(2)-Cd(1)-O(5)	90.61(15)	O(3)A-Cd(2)-O(1)	91.14(14)
O(4)A-Cd(1)-O(2)	88.44(15)	O(6)C-Cd(2)-O(1)	95.85(13)
N(1)-Cd(1)-O(2)	90.12(15)	O(6)-Cd(2)-O(1)	82.04(13)
N(2)-Cd(1)-O(2)	85.64(16)	O(1)C-Cd(2)-O(1)	177.17(18)
O(5)-Cd(1)-O(2)	176.13(13)		

a Symmetry codes: A -x+1,-y+1,-z+1 B x,y,z-1 C x,y,z+1 for **1**; A x,y,z-1 B x,-y+1/2,z-1 C x,-y+1/2,z D -x,-y,-z E x,y,z+1 for **2**; A -x+2,y,-z+1/2 B -x+1,y,-z+1/2 C -x,-y,-z for **3**; A x,-y+2,z-1/2 B -x+1,-y+2,-z+1 C -x+1,y,-z+1/2 D x,-y+2,z+1/2 E -x+1,-y+1,-z F -x+3/2,y-1/2,-z+1/2 G -x+3/2,y+1/2,-z+1/2 H -x+1,y,-z+3/2 for **4**

d(D-H) d(H..A) <DHA d(D..A) **Symmetry** D-H Α Operation (Å) (Å) (°) (Å) O1W-H1AW 0.852 2.477 115.91 2.950 O2 -x+1, -y+1, -z+1 O1W-H1AW 0.852 O4W 2.532 155.79 3.328 O1W-H1BW 0.846 2.011 169.96 2.848 O3W O2W-H2AW 0.831 2.621 119.00 2.830 O2W -x+1, -y+2, -z -x+1, -y+1, -z O2W-H2BW 0.834 2.006170.79 2.832 O5W O3W-H3AW 0.845 O6W 2.311 116.21 2.789 O3W-H3BW 0.856 2.495 2.921 03 111.61 -x+1, -y+1, -z+1 O5W O3W-H3BW 0.856 2.618 160.44 3.437 O2W O4W-H4AW 0.853 2.115 176.96 2.967 O4W-H4BW 0.852 2.038 170.80 2.882O2 -x+1, -y+1, -z+1 O5W-H5AW O3 -x+1, -y+1, -z+1 0.860 2.026 172.71 2.882 0.853 3.070 O6W O5W-H5BW 2.238 165.25 O6W-H6AW 0.837 2.207 2.942 O5W 146.51 -x+1, -y+1, -z O6W-H6BW 0.839 2.063 160.15 2.866 O4W -x+1, -y+1, -z

Table S2 Hydrogen bonding interactions of $\{H_2O\}_{12}$ cluster in compound 1

3. Physical Measurements Infrared spectrum of 1-4

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

Fig. S18 IR spectra of 3

Fig. S19 IR spectra of 4

Thermogravimetric (TG) analyses of 1-4

Fig. S21 TGA curve of 2

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2011

Fig. S23 TGA curve of 4

Fig. S24 simulated and experimental patterns of 1: simulated(red), as-synthesized sample at room temperature(black)

Fig. S25 simulated and experimental patterns of 2: simulated(red), as-synthesized sample at room temperature(black)

Fig. S26 simulated and experimental patterns of 3: simulated(red), as-synthesized sample at room temperature(black)

Fig. S27 simulated and experimental patterns of 4: simulated(red), as-synthesized sample at room temperature(black), desolvated sample(blue) of 4 (heated at 140°C for 12 h under vacuum).