Structural systematics and conformational analyses of a 3×3 isomer grid of nine *N*-(tolyl)pyridinecarboxamides and three chlorinated relatives.

Pavle Mocilac and John F. Gallagher*

Targeted Therapeutics and Theranostics (T^3) Programme School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

Electronic Supplementary Information

Table of Contents

1	Detailed description of synthetic procedures	2
1.	ILINIA data and anothe	<u>2</u>
۷.	21 Wirk data allu spectra	4
	2.1. <u>Nppvi</u> 2.2. NoveM	4
	2.2. NpmM	2
	2.3. NpoM	6
	2.4. <u>NmpM</u>	7
	2.5. <u>NmmM</u>	<u>8</u>
	2.6. <u>NmoM</u>	<u>9</u>
	2.7. <u>NopM</u>	<u>10</u>
	2.8. <u>NomM</u>	<u>11</u>
	2.9. <u>NooM</u>	12
	2.10. <u>5-Cl-NopM</u>	<u>13</u>
	2.11. <u>5-Cl-NomM</u>	<u>14</u>
	2.12. <u>5-Cl-NooM</u>	<u>15</u>
3.	IR data and spectra (ATR)	<u>16</u>
	3.1. <u>NppM</u>	<u>16</u>
	3.2. <u>NpmM</u>	17
	3.3. NpoM	18
	3.4. <u>NmpM</u>	<u>19</u>
	3.5. <u>NmmM</u>	20
	3.6. <u>NmoM</u>	21
	3.7. NopM	22
	3.8. NomM	23
	3.9. NooM	24
	3.10. 5-Cl-NopM	25
	3.11. 5-Cl-NopM	26
	3.12. 5-Cl-NopM	27
4.	Crystallographic details	28
	4.1. Table 2. Experimental details for the nine NxxM isomers	28
	4.2. Table 3. Experimental details for the three CI-5-NxxM isomers and NmpFM	30
	4.3. Table 4. Selected hydrogen-bond parameters for the nine NxxM isomers	31
	4.4. Table 5. Selected hydrogen-bond parameters for three Cl-5-NxxM isomers and NmpFM	33
5.	Ab initio calculation information	34
	5.1. Energy information	34
	5.1.1. Table 3. Optimisations in <i>gas phase</i>	34
	5.1.2 Table 4 Optimisations in CH ₂ Cl ₂	34
	5.1.3. Table 5. Optimisations in H_2O	34
	5.1.4. Table 6. Comparison of energies in different media	35
	5.2. PES scans of the nine NxxM conformers (rotamers), optimised in <i>gas phase</i>	36
	5.3. PES scans of the nine NxxM conformers (rotamers), optimised in gas phase	38
	and solvents	20

1. Detailed description of synthetic procedures

As acyl chlorides are very reactive, the reactions were performed in anhydrous conditions in CH_2Cl_2 (under N₂), initially at 5°C and then at room temperature. A by-product is HCl, and triethylamine (Et₃N) was employed to drive the reaction equilibrium towards the **NxxM** product. The pyridinoyl chlorides technically were used in the form of hydrochlorides so an additional mole of Et₃N was used to enhance their solubility in CH_2Cl_2 so that in total, two molar equivalents of triethylamine (Et₃N) were added per reaction.

Condensation reactions were performed with the 4-, 3- or 2-toluidines (1 ml, 10.41 mmol) added to a 250 ml flask placed on an ice bath and with subsequent stirring. Then, 30 ml of CH_2Cl_2 was added to the flask followed by addition of Et_3N (1.5 ml, 10.76 mmol). Finally, the 4-, 3- or 2-pyridinoyl chlorides (2 g, 11.23 mmol) were added in portions directly into this solution mixture. Another 30 ml of CH_2Cl_2 and 1.5 ml of NEt₃ was added to accelerate the dissolution of any solids and the reaction mixture was allowed to warm to room temperature and stirred overnight.

Organic washing and work-up was as standard: the organic reaction phase was washed with 20 ml of KHCO₃ (0.1 M) solution *ca*. 3-7 times and during purification, glassware was warmed to *ca*. 35°C. Then, 1.5 g of anhydrous MgSO₄ was added to the organic solutions for 20 minutes. The flask contents were filtered through a Büchner funnel (under vacuum) to remove MgSO₄. The filtrate was evaporated under vacuum and the crystallization induced giving the desired product in modest to good yields.

Separation and purification of NoxM compounds

The **NoxM** compounds were successfully separated from **5-CI-NoxM** compounds by column chromatography using silica gel as stationary phase and mixture of chloroform, ethyl acetate and cyclohexane (4:2:1).

Fig. 1. Schematic diagram of the NxxM synthesis.

NxxM	m/g	yield/%	m.p./°C
NppM	1.578	78.9	161.0-162.5
NmpM	1.847	92.3	140.2-142.9
NpoM	1.747	87.3	123.9-125.9
NmpM	1.863	93.1	147.6-148.3
NmmM	1.530	76.5	113.0-114.7
NmoM	1.390	69.5	106.1-107.0
NopM	1.340	67.0	104.7-105.2
NomM	0.876	43.8	49.2-50.5
NooM	1.134	56.7	64.1-64.9
5-Cl-NopM	0.250	12.5	125.5-129.5
5-Cl-NomM	0.224	11.2	70.2-73.9
5-Cl-NooM	0.332	16.6	128.3-128.6

Table 1 Obtained amounts, yields and melting point ranges of the NxxM isomers with 5-Cl-NoxM.

NxxM – Electronic Supplementary Information on 19/04/2011

2. ¹H NMR data and spectra

2.1 NppM

¹H NMR (CDCl₃) δ 2.37 (3H, s), 7.21 (2H, d, ³*J* = 8), 7.54 (2H, d, ³*J* = 8), 7.73 (2H, dd, ³*J* = 4.5, ⁴*J* = 1.5), 8.00 (1H, br s), 8.80 (2H, dd, ³*J* = 4.5, ⁴*J* = 1.5); ¹H NMR (DMSO-*d*⁶) δ 2.29 (3H, s), 7.19 (2H, d, ³*J* = 8), 7.66 (2H, d, ³*J* = 8.4), 7.86 (2H, dd, ³*J* = 4.5, ⁴*J* = 1.6), 8.79 (2H, dd, ³*J* = 4.5, ⁴*J* = 1.6), 10.44 (1H, br s); ¹³C NMR (DMSO-*d*⁶) δ 20.49, 120.43, 121.52, 129.09, 133.20, 136.03, 141.96, 150.21, 163.70.

<u>2.2 NpmM</u>

¹**H NMR (CDCl₃)** δ 2.31 (3H, s), 6.94 (1H, d, ${}^{3}J$ = 8), 7.20 (1H, t, ${}^{3}J$ = 8), 7.35 (1H, d, ${}^{3}J$ = 8), 7.44 (1H, s), 7.65 (2H, dd, ${}^{3}J$ = 4.5, ${}^{4}J$ = 1.5), 7.96 (1H, br s), 8.72 (2H, dd, ${}^{3}J$ = 4.5, ${}^{4}J$ = 1.5); ¹**H NMR (DMSO-d**⁶) δ 2.32 (3H, s), 6.97 (1H, d, ${}^{3}J$ = 7.6), 7.26 (1H, t, ${}^{3}J$ = 7.8), 7.57 (1H, d, ${}^{3}J$ = 8), 7.62 (1H, s), 7.86 (2H, dd, ${}^{3}J$ = 4.3, ${}^{4}J$ = 1.7), 8.79 (2H, dd, ${}^{3}J$ = 4.3, ${}^{4}J$ = 1.7), 10.43 (1H, br s); ¹³**C NMR (DMSO-d**⁶) δ 21.62, 118.06, 121.40, 121.98, 125.32, 128.99, 138.34, 138.93, 142.39, 150.69, 164.32.

<u>2.3 NpoM</u>

¹**H NMR (CDCl₃)** δ 2.35 (3H, s), 7.19 (1H, td, ${}^{3}J$ = 7.5, ${}^{4}J$ = 1), 7.28 (2H, m), 7.76 (2H, d, ${}^{3}J$ = 4.2), 7.87 (1H, d, ${}^{3}J$ = 8), 7.90 (1H, br s), 8.8 (2H, d, ${}^{3}J$ = 4.8); ¹**H NMR (DMSO***d*⁶) δ 2.25 (3H, s), 7.21 (1H, td, ${}^{3}J$ = 7.3, ${}^{4}J$ = 1.5), 7.25 (1H, td, ${}^{3}J$ = 7.6, ${}^{4}J$ = 1.7) 7.30 (1H, dd, ${}^{3}J$ = 7.4, ${}^{4}J$ = 1.5), 7.36 (1H, d, ${}^{3}J$ = 7.5), 7.89 (2H, dd, ${}^{3}J$ = 4.6, ${}^{4}J$ = 1.4), 8.80 (2H, dd, ${}^{3}J$ = 4.5, ${}^{4}J$ = 1.5), 10.19 (1H, br s); ¹³**C NMR (DMSO-***d*⁶) δ 17.82, 121.55, 126.10, 126.40, 126.57, 130.40, 133.76, 135.70, 141.46, 150.31, 163.76.

NxxM – Electronic Supplementary Information on 19/04/2011

2.4. NmpM

7

<u>2.5. NmmM</u>

¹**H NMR (CDCl₃)** δ 2.38 (3H, s), 7.01 (1H, d, ${}^{3}J$ = 7.5), 7.27 (1H, t, ${}^{3}J$ = 7.7), 7.44 (2H, d, ${}^{3}J$ = 7.2), 7.53 (1H, s), 8.23 (1H, d, ${}^{3}J$ = 7.5), 8.26, (1H, br s), 8.75 (1H, d, ${}^{3}J$ = 4.2), 9.11 (1H, s); ¹**H NMR (DMSO-***d*⁶) δ 2.32 (3H, s), 6.95 (1H, d, ${}^{3}J$ = 7.5), 7.25 (1H, t, ${}^{3}J$ = 7.8), 7.57 (1H, dd, ${}^{3}J$ = 8, ${}^{4}J$ = 0.5), 7.57 (1H, ddd, ${}^{3}J$ = 8, ${}^{4}J$ = 4.8, ${}^{5}J$ = 0.5), 7.62 (1H, s), 8.29 (1H, dt, ${}^{3}J$ = 8, ${}^{4}J$ = 2), 8.76 (1H, dd, ${}^{3}J$ = 4.8, ${}^{4}J$ = 1.6), 9.10 (1H, d, ${}^{3}J$ = 2), 10.38 (1H, br s); ¹³C NMR (DMSO-*d*⁶) δ 21.61, 117.93, 121.27, 123.90, 125.07, 128.94, 131.02, 135.82, 138.26, 139.14, 149.05, 152.47, 164.37.

<u>2.6. NmoM</u>

¹**H NMR (CDCl₃)**: δ 2.27 (3H, s) 7.09 (1H, td, ³*J* = 8, ⁴*J* = 1), 7.19 (2H, m), 7.39 (1H, dd, ³*J* = 8.5, ⁴*J* = 4.8), 7.78 (1H, d, ³*J* = 6.3), 7.81 (1H, br s), 8.18 (1H, d, ³*J* = 6.8), 8.71 (1H, d, ³*J* = 4.2), 9.07 (1H, s); ¹**H NMR (DMSO-d⁶**): δ 2.26 (3H, s), 7.20 (1H, td, ³*J* = 7.3, ⁴*J* = 1.6), 7.24 (1H, td, ³*J* = 7.6, ⁴*J* = 1.5), 7.30 (1H, dd, ³*J* = 7, ⁴*J* = 1.3), 7.37 (1H, d, ³*J* = 7.8), 7.58 (1H, ddd, ³*J* = 4, ⁴*J* = 4.8, ⁵*J* = 0.7), 8.32 (1H, dt, ³*J* = 8.4, ⁴*J* = 1.8), 8.78 (1H, dd, ³*J* = 4.8, ⁴*J* = 1.6), 9.15 (1H, d, ³*J* = 1.6), 10.10 (1H, br s); ¹³**C NMR (DMSO-d⁶**): δ 17.88, 123.54, 126.05, 126.22, 126.54, 130.08, 130.37, 133.68, 135.40, 135.93, 148.67, 152.11, 163.84.

NxxM – Electronic Supplementary Information on 19/04/2011

<u>2.7. NopM</u>

¹**H NMR (CDCl₃)**: δ 2.27 (3H, s), 7.12 (2H, d, ${}^{3}J$ = 8), 7.40 (1H, ddd, ${}^{3}J$ = 7.5, ${}^{4}J$ = 4.8, ${}^{5}J$ = 1.2), 7.60 (2H, d, ${}^{3}J$ = 8.4), 7.83 (1H, td, ${}^{3}J$ = 7.7, ${}^{4}J$ = 1.7), 8.23 (1H, dt, ${}^{3}J$ = 7.8, ${}^{4}J$ = 1), 8.54 (1H, dq, ${}^{3}J$ = 4.8, ${}^{4}J$ = 0.8), 9.90 (1H, br s); ¹**H NMR (DMSO-d⁶)**: δ 2.29 (3H, s), 7.17 (2H, d, ${}^{3}J$ = 8.4), 7.67 (1H, ddd, ${}^{3}J$ = 7.6, ${}^{4}J$ = 4.8, ${}^{5}J$ = 1.2), 7.80 (2H, d, ${}^{3}J$ = 8.4), 8.07 (1H, td, ${}^{3}J$ = 7.7, ${}^{4}J$ = 1.7), 8.16 (1H, dt, ${}^{3}J$ = 7.8, ${}^{4}J$ = 1), 8.74 (1H, dq, ${}^{3}J$ = 4.8, ${}^{4}J$ = 0.8), 10.56 (1H, br s); ¹³C NMR (DMSO-d⁶) δ 20.49, 120.15, 122.27, 126.81, 129.05, 132.87, 135.80, 138.10, 148.38, 149.94, 162.21.

2.8 NomM

¹**H NMR (CDCl₃)**: δ 2.31 (3H, s), 6.90 (1H, d, ${}^{3}J$ = 7.5), 7.2 (1H, t, ${}^{3}J$ = 7.8), 7.41 (1H, ddd, ${}^{3}J$ = 7.6, ${}^{4}J$ = 4.8, ${}^{5}J$ = 1.2), 7.50 (1H, d, ${}^{3}J$ = 8), 7.58 (1H, s), 7.84 (1H, td, ${}^{3}J$ = 7.7, ${}^{4}J$ = 1.7), 8.23 (1H, dt, ${}^{3}J$ = 7.8, ${}^{4}J$ = 1), 8.54 (1H, dq, ${}^{3}J$ = 4.7, ${}^{4}J$ = 0.8), 9.94 (1H, br s); ¹**H NMR (DMSO-d⁶**) δ : 2.32 (3H, s), 6.95 (1H, d, ${}^{3}J$ = 7.5), 7.25 (1H, t, ${}^{3}J$ = 7.7), 7.68 (1H, ddd, ${}^{3}J$ = 7.7, ${}^{4}J$ = 1.7), 8.23 (1H, dt, ${}^{3}J$ = 7.8, ${}^{4}J$ = 1.2), 7.69 (1H, d, ${}^{3}J$ = 8), 7.77 (1H, s), 8.07 (1H, td, ${}^{3}J$ = 7.7, ${}^{4}J$ = 1.7), 8.16 (1H, dt, ${}^{3}J$ = 7.8, ${}^{4}J$ = 1), 8.74 (1H, dq, ${}^{3}J$ = 4.7, ${}^{4}J$ = 0.8), 10.54 (1H, br s); ¹³C NMR (DMSO-d⁶): δ 21.19, 117.34, 120.66, 122.28, 124.60, 126.88, 128.51, 137.86, 138.13, 138.18, 148.39, 149.86, 162.30.

<u>2.9 NooM</u>

¹**H NMR** (**CDCl**₃) **δ**: 2.35 (3H, s), 7.02 (1H, td, ${}^{3}J = 7.4$, ${}^{4}J = 1$), 7.16 (1H, d, ${}^{3}J = 7.4$), 7.21 (1H, t, ${}^{3}J = 7.8$), 7.41 (1H, ddd, ${}^{3}J = 7.7$, ${}^{4}J = 4.8$, ${}^{5}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.85 (1H, d, ${}^{3}J = 7.7$, ${}^{4}J = 1.2$), 7.84 (1H, td, ${}^{3}J = 7.4$, ${}^{4}J = 1.2$), 7.25 (1H, dt, ${}^{3}J = 7.7$, ${}^{4}J = 1.1$), 7.29 (1H, d, ${}^{3}J = 7.6$), 7.70 (1H, ddd, ${}^{3}J = 7.6$, ${}^{4}J = 4.8$, ${}^{5}J = 1.2$), 7.86 (1H, d, ${}^{3}J = 7.7$, ${}^{4}J = 1.7$), 8.18 (1H, dt, ${}^{3}J = 7.8$, ${}^{4}J = 1$), 8.75 (1H, dq, ${}^{3}J = 4.8$, ${}^{4}J = 0.8$), 10.23 (124.97, 126.26, 127.05, 130.23, 130.32, 135.91, 138.23, 148.55, 149.59, 161.89.

2.10. 5-Cl-NopM

¹H NMR (CDCl₃) δ 2.27 (3H, s), 7.12 (2H, d, ${}^{3}J$ = 8.3), 7.40 (1H, dd, ${}^{3}J$ = 5.2, ${}^{4}J$ = 2), 7.57 (2H, d, ${}^{3}J$ = 8.5), 8.22 (1H, dd, ${}^{3}J$ = 2, ${}^{4}J$ = 0.5), 8.43 (1H, d, ${}^{3}J$ = 5.3), 9.79 (1H, br s); ¹H NMR (DMSO-*d*⁶) δ 2.29 (3H, s), 7.17 (2H, d, ${}^{3}J$ = 8.3), 7.78 (2H, d, ${}^{3}J$ = 8.4), 7.84 (1H, dd, ${}^{3}J$ = 5.3, ${}^{4}J$ = 2), 8.15 (1H, d, ${}^{3}J$ = 2), 8.72 (1H, d, ${}^{3}J$ = 5.3), 10.63 (1H, br s); ¹M NMR (DMSO-*d*⁶): δ 20.49, 120.32, 122.37, 126.70, 129.06, 133.16, 135.60, 144.79, 149.96, 151.79, 161.10.

2.11. 5-Cl-NomM

¹**H NMR (CDCl₃)** δ 2.31 (3H, s), 6.91 (1H, d, ${}^{3}J$ = 7.6), 7.20 (1H, t, ${}^{3}J$ = 7.8), 7.41 (1H, dd, ${}^{3}J$ = 5.3, ${}^{3}J$ = 2), 7.48 (1H, d, ${}^{3}J$ = 8), 7.54 (1H, s), 8.22 (1H, d, ${}^{3}J$ = 2), 8.43 (1H, dd, ${}^{3}J$ = 5, ${}^{4}J$ = 0.5), 9.80 (1H, br s); ¹**H NMR (DMSO-***d*⁶) δ 2.31(3H, s), 6.96 (1H, d, ${}^{3}J$ = 7.6), 7.25 (1H, t, ${}^{3}J$ = 7.9), 7.68 (1H, d, ${}^{3}J$ = 8), 7.75 (1H, s), 7.84 (1H, dd, ${}^{3}J$ = 5.3, ${}^{4}J$ = 2), 8.14 (1H, d, ${}^{3}J$ = 2), 8.71 (1H, d, ${}^{3}J$ = 5.2), 10.59 (1H, br s); ¹³**C NMR (DMSO-***d*⁶) δ 21.18, 117.53, 120.84, 122.38, 124.85, 126.76, 128.51, 137.88, 137.97, 144.81, 149.97, 151.71, 161.19.

2.12. 5-Cl-NooM

<u>3. IR (ATR)</u> <u>3.1. NppM</u> IR (ATR): 3321 (m), 1647 (s), 1598 (s), 1555 (m), 1512 (s), 1405 (s).

<u>3.2. NpmM</u> IR (ATR): 3264 (w), 1669 (s), 1597 (m), 1551(s), 1431 (m), 1415(m);

3.4. NmpM IR (ATR): 3303 (m), 1672 (s), 1605 (s), 1535 (s), 1509 (s), 1483 (s), 1419 (s)

<u>3.5. NmmM</u> IR (ATR): 3252 (w), 3066 (w), 1674 (s), 1589 (s), 1551 (s), 1485 (m), 1416 (s)

<u>**3.6. NmoM**</u> IR (ATR): 3241 (m), 1653 (s), 1593 (s), 1523 (s), 1487(s), 1438 (m), 1418 (m);

<u>3.7. NopM</u> IR (ATR): 3336 (m), 1676 (s), 1588 (s), 1509 (s), 1463 (m), 1435 (m), 1406 (s);

<u>**3.8. NomM</u>** IR (ATR): 3286 (m), 1663 (s), 1587 (m), 1532 (s), 1444 (m), 1426 (s);</u>

<u>3.9. NooM</u> IR (ATR): 3343 (m), 1690 (s), 1587 (s), 1569 (m), 1532 (s), 1486 (m), 1455 (s), 1433 (s);

<u>**3.11. 5-Cl-NomM</u>** IR (ATR): 3317 (m), 1677(m), 1665 (s), 1595 (m), 1580 (m), 1538 (s), 1484 (m), 1457 (m), 1430 (m);</u>

<u>**3.12. 5-Cl-NooM</u>** IR (ATR): 3347 (s), 1684 (s), 1581 (s), 1536 (s), 1486 (s), 1458 (s), 1396 (m);</u>

4. Crystallographic details for nine NxxM isomers.

4.1. Table 2. Experimental details for the nine NxxM isomers

For all **NxxM** structures: $C_{13}H_{12}N_2O$, $M_r = 212.25$. Experiments were undertaken at 294(1) K with Mo $K\alpha$ radiation using an Xcalibur, Sapphire3, Gemini Ultra diffractometer. H atoms were treated by a mixture of independent (N-H) and constrained refinement (C-H).

	NppM	NpmM	NpoM	NmpM	NmmM
Crystal data					
Crystal system, space group	Monoclinic, P2/c	Monoclinic, $P2_1/n$	Monoclinic, Cc	Monoclinic, $P2_1/c$	Triclinic, P ⁻ 1
a, b, c (Å)	7.7391(4), 5.2338(2), 26.9102(13)	8.2919(3), 10.2600(3), 13.5713(4)	13.0101(6), 10.4826(3), 9.7957(4)	10.5017(5), 4.8807(2), 21.3459(9)	9.3767(4), 9.9187(3), 12.3386(4)
α, β, γ (°)	90, 90.321(5), 90	90, 100.919(3), 90	90, 122.729(6), 90	90, 100.868(4), 90	86.958(3), 86.980(3), 71.410(3)
$V(\text{\AA}^3)$	1089.98(9)	1133.67(6)	1123.84(11)	1074.47(8)	1085.36(7)
Ζ	4	4	4	4	4
μ (mm ⁻¹)	0.08	0.08	0.08	0.09	0.08
Crystal size (mm)	0.53×0.33×0.14	0.38×0.24×0.06	0.47×0.43×0.25	0.67×0.06×0.06	0.44×0.34×0.18
Data collection					
Absorption correction	Analytical (ABSFAC. Clark & Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)
T_{\min}, T_{\max}	0.966, 0.988	0.970, 0.995	0.963, 0.980	0.945, 0.995	0.964, 0.985
No. of measured, independent and observed reflections	8356, 8356, 5194 { <i>I</i> > 2σ(<i>I</i>)}	5751, 1836, 1170 { <i>I</i> > 2σ(<i>I</i>)}	8432, 1285, 1109 { <i>I</i> > 2σ(<i>I</i>)}	11243, 2070, 1001 $\{I > 2\sigma(I)\}$	26207, 6987, 4966 { <i>I</i> > 2σ(<i>I</i>)}
R _{int}	0.00	0.024	0.031	0.055	0.026
Refinement					
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.051,0.141,0.97	0.034,0.083,0.90	0.030,0.081,0.99	0.036,0.073,0.77	0.057,0.179,1.09
No. of reflections	8356	1836	1285	2070	6987
No. of parameters	152	151	150	151	299
No. of restraints	0	0	2	0	0
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} (e {\rm \AA}^{-3})$	0.30, -0.25	0.11, -0.09	0.14, -0.11	0.12, -0.10	0.28, -0.24

	NmoM	NopM	NomM	NooM
Crystal data		·	•	·
Crystal system, space group	Orthorhombic, <i>Pbca</i>	Monoclinic, $P2_1/c$	Monoclinic, <i>P</i> 2 ₁	Monoclinic, $P2_1/c$
a, b, c (Å)	8.0664(2), 9.4009(2), 29.5324(8)	6.0828(2), 27.0507(8), 7.1963(3)	9.2326(4), 14.0836(4), 9.4162(4)	7.7696(2), 17.6232(3), 8.8462(3)
α, β, γ (°)	90, 90, 90	90, 111.673(4), 90	90, 105.661(4), 90	90, 114.817(4), 90
$V(\text{\AA}^3)$	2239.48(10)	1100.40(7)	1178.92(8)	1099.41(5)
Ζ	8	4	4	4
μ (mm ⁻¹)	0.08	0.08	0.08	0.08
Crystal size (mm)	0.42×0.34×0.06	0.25×0.22×0.06	0.22×0.16×0.05	0.44×0.13×0.11
Data collection				
Absorption correction	Analytical (ABSFAC, Clark and Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)
T_{\min}, T_{\max}	0.967, 0.995	0.980, 0.995	0.983, 0.996	0.964, 0.991
No. of measured, independent and observed reflections	13292, 2421, 1591 $\{I > 2\sigma(I)\}$	6058, 1970, 1176 { <i>I</i> > 2 σ(<i>I</i>)}	16614, 2780, 1026 $\{I > 2\sigma(I)\}$	7586, 2389, 1541 { <i>I</i> > 2σ(<i>I</i>)}
R _{int}	0.036	0.038	0.096	0.021
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.107, 0.98	0.035, 0.083, 0.84	0.029, 0.045, 0.67	0.037, 0.093, 0.93
No. of reflections	2421	1970	2780	2389
No. of parameters	150	150	298	151
No. of restraints	0	0	1	0
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} (e {\rm \AA}^{-3})$	0.15, -0.13	0.14, -0.11	0.08, -0.08	0.14, -0.11

Computer programs: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05-01-2010 CrysAlis171 .NET) (compiled Jan 5 2010,16:28:46), *SHELXS97* (Sheldrick, 2008), *SHELXL97* (Sheldrick, 2008) and SORTX (McArdle, 1995), *PLATON* (Spek, 2009), *SHELXL97*.

This crystallographic experimental table was compiled using the IUCr facilities in Chester, U.K.

4.2 Table 3. Experimental details for the three Cl-5-NxxM isomers and mixed system NmpFM

Experiments were carried out at 294 (1) K with Mo K radiation using an Xcalibur, Sapphire3, Gemini Ultra diffractometer. H atoms were treated by a mixture of independent (N-H) and constrained refinement (C-H).

	5-Cl_NopM	5-Cl_NomM	5-Cl_NooM	NmpFM
Crystal data				
Chemical formula	$C_{13}H_{11}ClN_2O$	$C_{13}H_{11}ClN_2O$	$C_{13}H_{11}ClN_2O$	C ₁₃ H ₁₂ N ₂ O:C ₁₂ H ₉ FN ₂ O (1/1)
$M_{ m r}$	246.69	246.69	246.69	428.46
Crystal system, space group	Orthorhombic, $Pca2_1$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/n$	Orthorhombic, $Pna2_1$
a, b, c (Å)	7.36124 (11), 14.41068 (19), 11.21075 (16)	7.417 (2), 21.006 (4), 8.546 (2)	7.3288 (6), 7.4392 (5), 21.5025 (14)	19.870 (2), 10.8608 (9), 4.9241 (5)
α, β, γ (°)	90, 90, 90	90, 115.28 (3), 90	90, 91.481 (7), 90	90, 90, 90
$V(\text{\AA}^3)$	1189.24 (3)	1204.0 (5)	1171.93 (15)	1062.66 (18)
Ζ	4	4	4	2
μ (mm ⁻¹)	0.31	0.30	0.31	0.09
Crystal size (mm)	$\begin{array}{c} 0.26\times0.23\times\\ 0.16\end{array}$	0.53 × 0.19 × 0.11	0.39 × 0.31 × 0.10	$0.51\times0.23\times0.13$
Data collection				
Absorption correction	Analytical (ABSFAC. Clark & Reid, 1998)	Analytical (ABSFAC. Clark & Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)	Analytical (ABSFAC, Clark and Reid, 1998)
T_{\min}, T_{\max}	0.925, 0.953	0.857, 0.987	0.889, 0.970	0.954, 0.988
No. of measured, independent and observed reflections	8794, 8794, 7810 $\{I > 2\sigma(I)\}$	8582, 2583, 1324 $\{I > 2\sigma(I)\}$	9725, 3040, 2199 { <i>I</i> > 2σ(<i>I</i>)}	6723, 1286, 1045
R _{int}	0.00	0.048	0.017	0.021
Refinement				
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), S	0.026, 0.065, 0.98	0.066, 0.233, 1.00	0.038, 0.103, 1.07	0.035, 0.093, 1.05
No. of reflections	8794	2583	3040	1286
No. of parameters	160	160	160	159
No. of restraints	1	0	0	1
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.10, -0.16	0.32, -0.20	0.19, -0.22	0.11, -0.10

Computer programs: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05-01-2010 CrysAlis171 .NET) (compiled Jan 5 2010,16:28:46), *SHELXS97* (Sheldrick, 2008), *SHELXL97* (Sheldrick, 2008) and SORTX (McArdle, 1995), *PLATON* (Spek, 2009), *SHELXL97*. **The Flack parameter for 5-Cl_NopM is 0.00(4) [data were not merged].**

This crystallographic experimental table was compiled using the IUCr facilities in Chester, U.K.

D—H···A	D-H (Å)	$H \cdots A$ (Å)	$D \cdots A$ (Å)	D—H···A (°)
NppM _[10-002]			I	
N1—H1····O1 ⁱ	0.832 (13)	2.270 (13)	3.0529 (14)	157.0 (11)
С12—Н12…О1	0.93	2.47	2.9126 (17)	109
C12—H12····Cg1 ⁱⁱ	0.93	2.89	3.5835 (16)	133
NpmM_[10-003]				
N1—H1····N24 ⁱⁱⁱ	0.911 (15)	2.240 (16)	3.1265(18)	164.1 (14)
C22—H22…N24 ⁱⁱⁱ	0.93	2.57	3.353 (2)	142
С12—Н12…О1	0.93	2.28	2.8615 (19)	120
C23—H23…O1 ^{iv}	0.93	2.41	3.2538 (19)	152
NpoM_ [10-004]	·			·
N1—H1…O1 ^v	0.80 (3)	2.06 (3)	2.825 (2)	159 (2)
C17—H17E…N1	0.96	2.47	2.914 (3)	108
C23—H23…Cg1 ^{vi}	0.93	2.90	3.713 (3)	147
NmpM_[10-005]				
N1—H1····N23 ^{vii}	0.879 (14)	2.367 (14)	3.223 (2)	164.7 (12)
С12—Н12…О1	0.93	2.24	2.841 (2)	122
C22—H22…N1	0.93	2.58	2.901 (2)	101
C22—H22…N23 ^{vii}	0.93	2.39	3.318 (2)	176
C26—H26…O1 ^{viii}	0.93	2.57	3.210 (2)	126
NmmM_[10-006]				
N1A—H1A····N23B ^{ix}	0.91 (2)	2.23 (2)	3.090 (2)	157 (2)
N1B—H1B…N23A ^x	0.89 (2)	2.22 (2)	3.078 (2)	160.7 (19)
С12А—Н12А…О1А	0.93	2.38	2.929 (2)	117
C12B—H12B…O1B	0.93	2.49	2.952 (2)	111
C14A—H14A…O1B ⁱⁱ	0.93	2.50	3.343 (2)	151
C14B—H14B····O1A ^{xi}	0.93	2.50	3.328 (2)	148
C22A—H22A····Cg1 ^{xii}	0.93	2.82	3.555 (2)	137
C22B—H22B····Cg2 ^{xiii}	0.93	2.76	3.512 (2)	138
NmoM _[10-007]				
N1—H1····O1 ^{xiv}	0.855 (17)	2.055 (18)	2.8978 (15)	168.6 (15)
С17—Н17В…О1	0.96	2.57	3.072 (2)	113
C26—H26····Cg1 ^{xv}	0.93	2.72	3.5751 (16)	152
NopM _[10-008]				
N1—H1…N22	0.903 (15)	2.160 (15)	2.6548 (18)	113.6 (11)
С12—Н12…О1	0.93	2.46	2.9436 (18)	113

4.3 Table 4. Selected hydrogen-bond and contact parameters for the nine NxxM isomers.[‡]

NxxM – Electronic Su	plementary Information	on 19/04/2011
----------------------	------------------------	---------------

C16—H16…O1 ^{xvi}	0.93	2.40	3.3111 (18)	168
NomM_[10-009]				
N1A—H1A…O1B ^{xvii}	0.93 (2)	2.41 (2)	3.241 (3)	148 (2)
N1B—H1B…O1A	0.87 (2)	2.32 (2)	3.132 (3)	155 (2)
N1A—H1A…N22A	0.93 (2)	2.18 (2)	2.683 (4)	112.9 (18)
N1B—H1B…N22B	0.87 (2)	2.28 (2)	2.703 (4)	109.5 (19)
C12A—H12A…O1A	0.93	2.29	2.862 (4)	120
C14B—H14B…Cg1 ^{xviii}	0.93	2.66	3.543 (4)	160
NooM _[10-075]				
N1—H1…N22	0.896 (14)	2.079 (13)	2.6209 (15)	118.0 (11)
C16—H16…O1	0.93	2.35	2.9524 (16)	122

Symmetry code(s): (i) *x*, *y*+1, *z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) *x*+1/2, -*y*+1/2, *z*+1/2; (v) *x*, -*y*, *z*-1/2; (vi) *x*+1/2, *y*-1/2, *z*; (vi) -*x*, *y*-1/2, -*z*+1/2; (viii) -*x*, -*y*, -*z*+1; (ix) -*x*+1, -*y*, -*z*; (x) -*x*, -*y*+1, -*z*; (xi) - *x*, -*y*+1, -*z*+1; (xii) -*x*, -*y*, -*z*; (xiii) -*x*+1, -*y*+1, -*z*+1; (xiv) -*x*+1/2, *y*-1/2, *z*; (xv) *x*, -*y*-3/2, *z*-1/2; (xvi) *x*+1, *y*, *z*; (xvii) -*x*, *y*+1/2, -*z*; (xviii) -*x*+1, *y*-1/2, -*z*.

Additional Information for Tables 4 and 5 (pages 31-33 of the ESI):

For the purposes of distinguishing the primary and secondary hydrogen bonding interactions in the nine **NxxM** isomer series described in **Table 4** above, the **primary hydrogen bonding interactions** are labelled in **bold** for the two groups of (**NpxM**, **NmxM**) and (**NoxM**, **5**-Cl_**NoxM**) with the primary interactions coloured (**orange/green**) as used in **Table 2** of the <u>main paper</u>. The contacts are labeled in *italics* and these are predominantly intramolecular contacts.

Please also refer to the paper from the CSD group 'Hydrogen-bond directionality at the donor H atom – analysis of interaction energies and database statistics' by Peter A. Wood, Frank H. Allen and Elna Pidcock, *CrystEngComm*, 2009, **11**, 1563 for further details on hydrogen bonding and interaction energies.

D—H···A	D—H (Å)	$H \cdots A$ (Å)	$D \cdots A$ (Å)	D—H···A (°)
Cl_NopM_[10-024]	·	·	·	
N1—H1…N22	0.915 (9)	2.176 (9)	2.6514 (9)	111.5 (7)
С12—Н12…О1	0.93	2.41	2.9453 (11)	116
C23—H23…O1 ⁱ	0.93	2.53	3.4223 (11)	161
C17—H17A…Cg1 ⁱⁱ	0.96	2.82	3.6699 (12)	147
Cl_NomM_[10-096]				
N1—H1…N22	0.86 (5)	2.27 (4)	2.683 (4)	109 (4)
N1—H1····O1 ⁱⁱⁱ	0.86 (5)	2.37 (5)	3.035 (4)	134 (4)
С12—Н12…О1	0.93	2.37	2.964 (5)	121.2
Cl_NooM_[10-012]				
N1—H1…N22	0.860 (15)	2.175 (15)	2.6690 (15)	116.3 (12)
С16—Н16…О1	0.93	2.30	2.9128 (19)	123
C26—H26…Cl1 ^{iv}	0.93	2.83	3.7371 (14)	165
NmpFM _[10-086] [#]				
N1—H1…N23 ^v	0.92 (3)	2.34 (2)	3.207 (2)	157 (3)
C16—H16…N23 ^v	0.93	2.62	3.438 (3)	147
C22—H22…N23 ^v	0.93	2.41	3.337 (3)	178
С12—Н12…О1	0.93	2.24	2.835 (4)	122
C26—H26…O1 ⁱ	0.93	2.58	3.194 (2)	124
C24—H24…F14 ^{vi}	0.93	2.93	3.677 (11)	139

4.4 Table 5. Selected hydrogen-bond *and contact* parameters for three 5-Cl-NxxM isomers and NmpFM[#].

Symmetry code(s): (i) -*x*, -*y*, *z*+1/2; (ii) *x*+1/2, -*y*+1, *z*; (iii) *x*, -*y*+3/2, *z*-1/2; (iv) -*x*+1/2, *y*+1/2, -*z*+1/2; (v) - *x*, -*y*+1, *z*-1/2; (vi) *x*-1/2, -*y*+1/2, *z*+2.

NmpFM refinement[#]

Refinement with F only (with free variable) gives R = 0.042, F14 occupancy of 0.77(1), WGHT = 0.075.

Refinement as CH_3 only (with free variable) gives R = 0.042, CH_3 occupancy of 1.20(1), WGHT = 0.071.

Both refinements give poorer results for the overall refinement process [CH₃ with AFIX 137].

The final refinement gives R = 0.035 with 50% F and 50% CH₃ occupancy.

5. Ab initio calculation results

5.1. Energy results

5.1.1. Table 6. Optimisations in gas phase

	E _{SCF}	δE_{SCF}	E_0	δE_0	Е	δΕ	G	δG
NppM	-683.2662	-4.38	-686.1620	0.00	-686.1490	-1.64	-686.2031	0.00
NpmM	-683.2670	-6.63	-686.1623	-0.76	-686.1484	0.00	-686.2063	-8.38
NpoM	-683.2645	0.00	-686.1623	-0.68	-686.1487	-0.91	-686.2039	-2.09
NmpM	-683.2683	-10.03	-686.1627	-1.84	-686.1488	-1.16	-686.2057	-6.64
NmmM	-683.2692	-12.36	-686.1630	-2.54	-686.1491	-1.88	-686.2061	-7.78
NmoM	-683.2667	-5.78	-686.1631	-2.77	-686.1495	-2.98	-686.2047	-4.23
NopM	-683.2774	-33.97	-686.1728	-28.26	-686.1600	-30.34	-686.2134	-27.00
NomM	-683.2783	-36.31	-686.1730	-28.98	-686.1603	-31.17	-686.2135	-27.31
NooM	-683.2761	-30.37	-686.1733	-29.66	-686.1599	-30.27	-686.2145	-29.93

5.1.2. Table 7. Optimisations in CH₂Cl₂

	E _{SCF}	δE_{SCF}	Eo	δE_0	Е	δΕ	G	δG
NppM	-683.2936	-5.63	-686.18678	0.00	-686.1731	0.00	-686.2288	-0.69
NpmM	-683.2944	-7.63	-686.18692	-0.38	-686.1733	-0.43	-686.2289	-0.94
NpoM	-683.2915	0.00	-686.18703	-0.67	-686.1736	-1.26	-686.2285	0.00
NmpM	-683.2957	-10.99	-686.18704	-0.70	-686.1734	-0.68	-686.2291	-1.57
NmmM	-683.2965	-13.16	-686.18726	-1.28	-686.1736	-1.28	-686.2293	-2.11
NmoM	-683.2937	-5.71	-686.18736	-1.53	-686.1739	-2.02	-686.2292	-1.69
NopM	-683.3010	-24.99	-686.19443	-20.09	-686.1816	-22.32	-686.2350	-16.98
NomM	-683.3018	-26.99	-686.19439	-19.99	-686.1808	-20.22	-686.2362	-20.21
NooM	-683.2994	-20.73	-686.19450	-20.28	-686.1813	-21.38	-686.2351	-17.29

5.1.3. Table 8. Optimisations in H₂O

	E _{SCF}	δE_{SCF}	E ₀	δE_0	Е	δΕ	G	δG
NppM	-683.2873	-1.54	-686.17900	-0.30	-686.1653	-0.33	-686.2212	-1.83
NpmM	-683.2879	-3.33	-686.17889	0.00	-686.1652	0.00	-686.2212	-1.85
NpoM	-683.2867	0.00	-686.17960	-1.85	-686.1663	-2.77	-686.2205	0.00
NmpM	-683.2897	-7.84	-686.17927	-1.00	-686.1656	-0.96	-686.2216	-2.81
NmmM	-683.2904	-9.69	-686.17916	-0.71	-686.1655	-0.80	-686.2212	-1.74
NmoM	-683.2892	-6.60	-686.17994	-2.75	-686.1666	-3.56	-686.2210	-1.16
NopM	-683.2922	-14.44	-686.18423	-14.02	-686.1722	-18.27	-686.2237	-8.28
NomM	-683.2930	-16.64	-686.18404	-13.51	-686.1704	-13.66	-686.2263	-15.08
NooM	-683.2904	-9.81	-686.18415	-13.82	-686.1717	-16.96	-686.2237	-8.31

The tables present absolute values of electronic (E_{SCF}), zero point (E_0), energy (E) and Gibbs free energy (G) for the nine **NxxM** isomers expressed in Hartrees (E_h). The relative energies (**NppM**, **NpmM** or **NpoM** is taken as basis point) are shown in columns with suffix δ , and are expressed in kJ.mol⁻¹.

-	$gas phase \rightarrow CH_2CH_2$				$gas phase \rightarrow H_2O$				$CH_2Cl_2 \rightarrow H_2O$				logK _{D/W}
-	ΔE_{SCF}	ΔE_0	ΔΕ	ΔG_{solv}	ΔE_{SCF}	ΔE_0	ΔΕ	ΔG_{solv}	$\Delta\Delta E_{SCF}$	$\Delta\Delta E_0$	ΔΔΕ	$\Delta\!\Delta G_{solv}$	
NppM	-72.09	-65.04	-63.25	-67.33	-55.38	-44.63	-42.82	-47.53	-16.71	-20.41	-20.42	-19.80	3.47
NpmM	-71.84	-64.65	-65.32	-59.21	-54.93	-43.58	-44.13	-39.17	-16.92	-21.08	-21.19	-20.04	3.51
NpoM	-70.84	-65.03	-65.24	-64.55	-58.22	-45.51	-45.99	-43.61	-12.62	-19.52	-19.24	-20.94	3.67
NmpM	-71.81	-63.90	-64.40	-61.58	-56.03	-43.50	-43.94	-41.87	-15.77	-20.40	-20.47	-19.70	3.45
NmmM	-71.64	-63.78	-64.28	-60.98	-55.55	-42.51	-43.05	-39.66	-16.09	-21.27	-21.24	-21.32	3.73
NmoM	-70.78	-63.80	-63.93	-64.10	-59.04	-44.32	-44.72	-42.64	-11.73	-19.48	-19.21	-21.47	3.76
NopM	-61.86	-56.86	-56.87	-56.62	-38.69	-30.10	-32.07	-26.98	-23.17	-26.77	-24.80	-29.64	5.19
NomM	-61.52	-56.05	-53.94	-59.54	-38.55	-28.87	-26.63	-33.48	-22.97	-27.18	-27.32	-26.06	4.56
NooM	-61.21	-55.66	-55.99	-54.00	-37.67	-28.49	-30.82	-24.08	-23.54	-27.17	-25.17	-29.92	5.24

5.1.4. Table 9. Comparison of energies in different media

Comment on energy calculations:

The least stable molecules are **NppM** and **NpoM**, while the most stable, regardless of media is **NomM**. The **NoxM** molecules due to their inherent stabilisation through intramolecular N-H...N_{pyr} hydrogen bonding are the most stable, with significant differences as compared to the other six **NpxM/NmxM** isomers. Another stabilisation factor is the methyl group located in a *meta* position, although this effect is less pronounced. In total, the effects of the pyridine **N** atom and CH₃ group positions on stability is summarised as: **No>Nm>Np** with **mM>pM>oM**. The estimated ΔG_{solv} in CH₂Cl₂ and H₂O, along with theoretical logK_{D/W} are consistent with our experimental observations and with no unexpected results. All compounds should be 10^3 - 10^4 times more soluble in CH₂Cl₂ than in H₂O; the **NoxM** series are expected to be the least soluble in water.

The **Table 9** above shows differences (Δ) of the energies (E_{SCF} , E_0 , E and G) for the nine **NxxM** isomers in different media expressed in kJ.mol⁻¹. The ΔG_{solv} represents the calculated energy of solvation, while $\Delta\Delta G_{solv}$ represents the difference of energies of solvation in two different solvents (CH_2Cl_2 and H_2O). The final variable, $logK_{D/W}$ presents the tentative (theoretical) values of the partition coefficient of the **NxxM** molecules between dichloromethane (CH_2Cl_2 , DCM) and water (H_2O), calculated as $logK_{D/W} = -\Delta\Delta G_{solv}/2.303$ RT. This model has not been validated using the exact experimental values of $logK_{D/W}$, therefore, it has exclusively relative (qualitative) not absolute (quantitative) significance and the tentative values of $logK_{D/W}$ should not be taken as final.

5.2. Potential energy surface (PES) scans of the nine NxxM conformers (rotamers), optimised in gas phase

NxxM – Electronic Supplementary Information on 19/04/2011

Detailed description:

The *para*-pyridine (Np) ring has a PES curve with two global maxima at *ca*. 65° and -120° ($TS_{Np}^{II} = 11.94 \pm 0.18 \text{ kJ.mol}^{-1}$), two local maxima at around -30° and 150° ($TS_{Np}^{II} = 1.98 \pm 0.05 \text{ kJ.mol}^{-1}$) and four global minima at *ca*. 0, -55, 125 and ±180°.

The *meta*-pyridine (Nm) ring has two global maxima at *ca*. (-5.5, 12.5) and $\pm 160^{-1}$. The *meta*-pyridine (Nm) ring has two global maxima at *ca*. -120° and 65° , (TS_{Nm}^{III} = 14.57±0.12 kJ.mol⁻¹), two local maxima at *ca*. -25° (TS_{Nm}^{II} = 1.48±0.05 kJ.mol⁻¹) and 150° (TS_{Nm}^{III} = 7.57 ± 0.17 kJ.mol⁻¹), two local minima at *ca*. 125° and $\pm 180^{\circ}$ (LM_{Nm}^{II} = 4.70 ± 0.17 kJ.mol⁻¹) and two global minima at 0° and -55° .

The *ortho*-pyridine (No) ring shows a symmetric PES curve with one global maximum at $\pm 180^{\circ}$ (TS_{No}^{II} = 59.07 ± 0.53 kJ.mol⁻¹), two local maxima at $\pm 105^{\circ}$ (TS_{No}^I = 50.28 ± 0.34 kJ.mol⁻¹), two local minima at *ca*. $\pm 130^{\circ}$ (LM_{No}^I = 49.44 ± 0.41 kJ.mol⁻¹) and one global minimum at 0°. The *para*-tolyl (**pM**) gives a symmetric PES curve with two global maxima at *ca*. $\pm 90^{\circ}$ (TS_{pM}^{II} = 13.15 ± 0.09 kJ.mol⁻¹, while TS_{pM}^I [NopM] = 17.33 kJ.mol⁻¹), and two global minimum at 0° and $\pm 180^{\circ}$.

The *meta*-tolyl (mM) has a symmetric PES curve with two global maxima at $ca. \pm 90^{\circ}$ (TS_{mM}^I = 14.54 ± 0.06 kJ.mol⁻¹, while TS_{mM}^I[NomM] = 18.79±0.11 kJ.mol⁻¹), one local minima at $ca. \pm 180^{\circ}$ (LM_{mM}^I = 0.37±0.02 kJ.mol⁻¹, while LM_{mM}^I[NomM] = 0.46 kJ.mol⁻¹) and one global minima at 0°.

The *ortho*-tolyl (oM) ring: The PES in **NpoM** has one global maximum at 170°, while in **NmoM** it is at ±180° ($TS_{oM}^{III} = 37.13\pm0.53$ kJ.mol⁻¹). The PES curve has two local maxima at *ca*. 85° ($TS_{oM}^{II} = 10.39\pm0.01$ kJ.mol⁻¹) and -85° ($TS_{oM}^{III} = 11.21\pm0.19$ kJ.mol⁻¹), two local minima at *ca*. -125° ($LM_{oM}^{II} = 4.97$ kJ.mol⁻¹) and 110° ($LM_{oM}^{III} = 7.47\pm0.03$ kJ.mol⁻¹), and one global minimum (0°). The symmetric PES curve of the oM ring in **NooM** has one global maximum at ±180° (TS_{oM}^{III} [**NooM**] = 35.73 kJ.mol⁻¹), two local minima at ±85° (TS_{oM}^{III} [**NooM**] = 15.31 kJ.mol⁻¹), two local minima at ±120° (LM_{oM}^{III} [**NooM**] = 9.73 kJ.mol⁻¹) and the global minimum at 0°.

5.3. PES scans of the nine **NxxM** conformers (rotamers), optimised in *gas phase* (full line), CH₂Cl₂ (dashed line) and in H₂O (dotted line).

NxxM – Electronic Supplementary Information on 19/04/2011

When the *para*-pyridine (**Np**) ring rotates towards orthogonality (around TS_{Np}^{II}) the rotational barriers decrease by ~16.5% in CH₂Cl₂ (~17.2% in H₂O), whereas, in the areas of planarity (around TS_{Np}^{I}) the rotational barriers increase in CH₂Cl₂ by ~15% (~50% in H₂O). The decrease in when orthogonal is almost the same in both solvents, while when planar the more polar solvent has the higher impact on the barrier increase. The reason for the increase is augumentation of repulsion due to the higher dielectric field.

The *meta*-pyridine (**Nm**) ring has a specific rotational barrier change pattern. In the **N**-syn conformation (from $\theta = -120^{\circ} \rightarrow 60^{\circ}$) the **Nm** ring is similar to the **Np** ring with the decrease with orthogonal rings of ~22.4% in CH₂Cl₂ (~25% in H₂O) and an increase when the rings are co-planar is ~54.1% in CH₂Cl₂ (~133.6% in H₂O). In the **N**-anti conformation a linear decrease by ~3.35 kJ.mol⁻¹ in CH₂Cl₂ (~3.87 kJ.mol⁻¹ in H₂O) is observed. A noticeable shift of barriers ($\Delta\theta$ ~5-10°) occurs due to the deviation of dihedral angles in solvents.

The rotational barrier for the *ortho*-pyridine (No) ring symmetrically decreases by ~41.7% (CH₂Cl₂) and ~63.2% (H₂O). Therefore, the solvent effect on the rotational barrier of the No ring is the most distinct, albeit as expected: the PCM-SMD model predicts the interaction of a strong solvent electric field with the intramolecular N-H...N hydrogen bond in the three NoxM and weakening the interaction.

The *para*-tolyl (**pM**) ring shows a regular decrease by ~27% in CH₂Cl₂ (~49% in H₂O). In **NopM** all of the barrier peaks are symmetrical, but in **NppM** and **NmpM** the peaks are shifted by ~5° in CH₂Cl₂ (~10° in H₂O). In the *meta*-tolyl (**mM**) ring the pattern is similar to the **pM** ring with decreases of ~28.5% in CH₂Cl₂ (~49% in H₂O), similar barrier shifts are noted as for the **pM** ring. The energy difference between **M**-*anti* and **M**-*syn* in CH₂Cl₂ decreases by ~43%, while in H₂O the difference is almost cancelled (93%), making both conformations energetically equal. Theoretically, this observation implies that the **mM** ring in polar solvents can adopt both **M**-*anti* and **M**-*syn* conformations equivalently. The *ortho*-tolyl (**oM**) ring behaviour is more complex with the **NpoM/NmoM** isomers showing differences to **NooM**. The rotational barriers in the **M**-*syn* conformation decrease by ~37% (CH₂Cl₂) and in the **M**-*anti* conformation increase by ~8% in CH₂Cl₂ (~13% in H₂O). However, due to a strong additional rotation of the **oM** rings optimised in H₂O the PES curve shape exhibits significant deviations. An extra local maximum is positioned at -45° *only* and TS_{oM}^{III} is displaced (by $\Delta \theta = 40^\circ$). For the symmetrical **NooM** the pattern is much simpler: as **M**-*syn* the conformation barrier decrease is ~31% in CH₂Cl₂ (~54% in H₂O) and in **M**-*anti* the increase is 6.7% in CH₂Cl₂ (5.6% in H₂O) because solvent induced high dielectric field can amplify repulsion of methyl group and carbonyle oxygene.