Electronic Supplementary Information (ESI)

Hydrothermal syntheses, crystal structures and magnetic properties of four

Mn(II) and Co(II) coordination polymers generated from new carboxylate-introduced 1,2,3-triazole ligands

Yan Li,^{*ab*} Wen-Qiang Zou,^{*a*} Mei-Feng Wu,^{*a*} Jian-Di Lin,^{*a*} Fa-Kun Zheng,^{*a*} Zhi-Fa Liu,^{*a*} Shuai-Hua Wang,^{*a*} Guo-Cong Guo^{*a*} and Jin-Shun Huang^{*a*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

^b Department of Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China

E-mail: <u>zfk@fjirsm.ac.cn</u>; *Fax:* +86 591 83714946

^{*} Author to whom correspondence should be addressed. E-mail: <u>zfk@fjirsm.ac.cn</u>

		e	-					
D-H…A	D-H/Å	H…A/Å	D…A/Å	D-H····A/°				
1								
O(1W)-H(1B)····O22_\$1	0.79(3)	1.98(3)	2.772(2)	178(3)				
O(1W)-H(1A)…O11_\$2	0.79(4)	2.36(4)	3.112(2)	160(3)				
O(2W)-H(2B)-O22_\$3	0.80(2)	1.89(3)	2.694(2)	177(2))				
O(2W)-H(2A)…O12_\$4	0.81(2)	1.97(3)	2.7604(18)	165(2)				
2								
O(1W)-H(1WA)…N2_\$1	0.857(8)	2.257(8)	3.101(3)	168.1(12)				
O(1W)-H(1WB)-04_\$2	0.859(8)	1.957(11)	2.785(3)	161.4(15)				
3								
O(1W)-H(1WA)…O11_\$1	0.860(3)	2.177(3)	2.7998(15)	129.0(3)				
O(1W)-H(1WB)…N13_\$2	0.858(3)	2.500(6)	3.0501(15)	122.7(5)				
O(2W)-H(2WA)-011_\$3	0.860(2)	2.094(5)	2.7571(14)	133.5(5)				
O(2W)-H(2WB)-O1W_\$4	0.861(2)	2.413(2)	3.2450(15)	162.8(3)				
O(2W)-H(2WB)-013_\$5	0.861(2)	2.427(13)	2.8726(16)	112.8(11)				
4								
O(1W)-H(1WA)-013_\$1	0.859(10)	1.929(14)	2.775(3)	168(4)				
O(1W)-H(1WB)O(7W)	0.861(10)	1.870(17)	2.691(5)	159(4)				
O(2W)-H(2WA)-015_\$2	0.854(10)	2.44(3)	3.107(4)	136(4)				
O(2W)-H(2WA)····O(7W)_\$2	0.854(10)	2.39(4)	2.993(5)	128(4)				
O(2W)-H(2WB)O15	0.859(10)	1.962(11)	2.815(3)	172(4)				
O(3W)-H(3WA)-015_\$3	0.854(10)	1.904(12)	2.752(3)	172(4)				
O(3W)-H(3WB)…O11_\$4	0.858(10)	2.071(13)	2.919(3)	170(3)				
O(4W)-H(4WA)-013_\$3	0.848(10)	1.905(13)	2.743(3)	169(4)				
O(4W)-H(4WB)O11	0.852(10)	1.909(15)	2.721(3)	159(3)				
O(5W)-H(5WA)…O14_\$5	0.854(10)	1.838(12)	2.679(3)	168(3)				
O(5W)-H(5WB)-014_\$6	0.853(10)	1.854(11)	2.701(3)	172(3)				

Table S1 Hydrogen-bonded geometry for $1-4^{a}$

O(6W)-H(6WA)-011_\$7	0.855(10)	2.026(12)	2.876(3)	173(4)
O(6W)-H(6WB)····O(5W)_\$8	0.852(10)	2.008(11)	2.856(3)	174(4)
O(7W)-H(7WA)-013_\$9	0.865(10)	2.23(3)	3.008(4)	150(5)

^a Symmetry codes for **1**: \$1 -x + 1/2, y - 1/2, -z + 1/2; \$2 -x + 1, -y + 1, -z + 1; \$3 -x + 1/2, -y + 3/2, -z; \$4 -x + 1, y - 1, -z + 1/2; for **2**: \$1 -x + 1/2, y + 1/2, -z + 3/2; \$2 x - 1/2, y + 1/2, z; for **3**: \$1 x, -y + 3/2, z - 1/2; \$2 x - 1, y, z; \$3 x, -y + 3/2, z + 1/2; \$4 x, y, z + 1; \$5 -x + 1, -y + 2, -z + 1; for **4**: \$1 -x + 1, -y + 2, -z; \$2 -x, -y + 2, -z + 1; \$3 x, y - 1, z; \$4 -x + 1, -y, -z; \$5 -x + 1, -y + 1, -z; \$6 x, y, z + 1; \$7 x, y + 1, z + 1; \$8 x, y + 1, z; \$9 -x, -y + 2, -z.

Fig. S1 IR spectra of H_3 dcpct, H_2 dcpt and the products of reactions (1)–(6) in Scheme 2 (see the text).

Fig. S2 Powdered X-ray diffraction (PXRD) patterns of 1 (a), 2 (b), 3 (c) and 4 (d).

Fig. S3 3-D structure of 1 connected by hydrogen bonds viewed along the *a* direction.

Fig. S4 A schematic representation of the 2-D CdCl₂ net in **2**.

Fig. S5 ORTEP representation of **3** with thermal ellipse at the 30% probability level. Hydrogen atoms are omitted for clarity.

Fig. S6 The 2-D layered structure of **3** linked by $dcpt^{2-}$ ligands.

Fig. S7 3-D structure of 4 connected by hydrogen bonds viewed along the *a* direction.

Fig. S8 A linear fit via Curie-Weiss law $1/\chi_{\rm M} = (T - \theta)/C$ in the temperature range of 2–300K for **1** (a), 16–300K for **2** (b), 50–300K for **3** (c) and 50–300K for **4** (d).