Supporting Information

Barbiturates with hydrogen-bonded layer and framework structures

Thomas Gelbrich, Denise Rossi, Clemens A. Häfele and Ulrich J. Griesser

1. Geometrical parameters of N-H…O bonds	S-2
2. Second-level graph-set representations of H-bonded structures	S-3
3. <i>XPac</i> comparison between 2a and 3b	S-4
4. H-bonded structures L-2 and L-3	S-5
References	S-5

Table S1. H	lydrogen b	onds for	form II o	f noctal (1; L-4).

#	<i>D</i> –H… <i>A</i>	$d(D{-}{\rm H})$ / Å	$d(\mathbf{H}\cdots A) \ / \ \mathbf{\mathring{A}}$	$d(D \cdots A) / \text{\AA}$	$\angle(DHA) / ^{\circ}$
a b	N1-H1···O4 ⁱ N3-H3···O2 ⁱⁱ	0.871(19) 0.875(19)	2.06(2) 1.96(2)	2.934(4) 2.832(4)	178(4) 172(4)

Symmetry transformations used to generate equivalent atoms: (i) x, -y+1/2, z-1/2 (ii) -x+2, -y, -z.

 Table S2. Hydrogen bonds for form A of 5,5-dichlorobarbituric acid (2a; L-5).

#	D-H···A	$d(D-H) / \text{\AA}$	$d(\operatorname{H}\cdots A) / \operatorname{\AA}$	$d(D\cdots A) / \mathring{\mathrm{A}}$	$\angle(DHA) / ^{\circ}$
а	N1A-H1A…O2B	0.866(18)	2.11(2)	2.953(4)	164(3)
b	N3A–H3A…O4D ⁱ	0.865(18)	2.19(2)	2.992(4)	155(3)
с	N1B-H1B…O2A	0.866(18)	2.15(2)	2.970(4)	159(3)
d	N3B-H3B····O4C ⁱⁱ	0.849(18)	2.22(2)	3.025(3)	158(3)
е	N1C-H1C…O2D	0.847(18)	2.08(2)	2.920(3)	172(3)
f	N3C-H3C···O4B	0.852(18)	2.23(2)	3.033(3)	157(3)
g	N1D-H1D…O2C	0.864(18)	2.11(2)	2.928(4)	158(3)
h	N3D-H3D…O4A ⁱⁱⁱ	0.886(18)	2.23(2)	3.041(3)	153(3)

Symmetry transformations used to generate equivalent atoms: (i) x-1/2, y+1/2, z (ii) x+1/2, y+1/2, z (iii) x, y-1, z.

Table S3. Hydrogen bonds for form B of 5,5-dibromobarbituric acid (2b; L-6).

	D-H···A	d(D-H) / Å	$d(\operatorname{H}\cdots A) / \operatorname{\AA}$	$d(D\cdots A) / \mathring{\mathrm{A}}$	$\angle(DHA) / ^{\circ}$
а	N1A–H1A····O4A ⁱ	0.846(16)	2.028(17)	2.853(2)	165(2)
b	N3A-H3A···O2B	0.849(15)	1.938(16)	2.786(2)	176(2)
с	N1B-H1B····O4B ⁱⁱ	0.843(16)	1.980(18)	2.765(2)	155(2)
d	N3B-H3B····O2A	0.867(16)	1.964(17)	2.823(2)	170(2)
е	N1C-H1C…O2C ⁱⁱⁱ	0.862(15)	1.961(16)	2.820(2)	174(2)
f	N3C-H3C···O2A	0.859(16)	2.205(18)	3.026(2)	160(2)

 $\overline{\text{Symmetry transformations used to generate equivalent atoms: (i) -x + 1/2, y + 1/2, z (ii) -x + 3/2, y - 1/2, z (iii) 1 - x, 2 - y, 1 - z.}$

Table S4. Hydrogen bonds for form A of 5,5-dibromobarbituric acid (3a; L-6).

	<i>D</i> –H…A	d(D-H) / Å	$d(\operatorname{H}\cdots A) / \operatorname{\AA}$	$d(D \cdots A) / \text{\AA}$	\angle (DHA) / °
а	N1A-H1A····O4A ⁱ	0.88	2.01	2.853(9)	160.5
b	N3A-H3A···O2B	0.88	1.95	2.818(9)	170.0
с	N1B-H1B····O4B ⁱⁱ	0.88	1.99	2.810(9)	153.5
d	N3B-H3B···O2A	0.88	1.96	2.835(9)	174.3
е	N1C-H1C…O2C ^{iiI}	0.88	1.94	2.808(9)	167.7
f	N3C-H3C···O2A	0.88	2.21	3.053(9)	160.2

Symmetry transformations used to generate equivalent atoms: (i) -x+1/2, y+1/2, z (ii) -x+3/2, y-1/2, z (iii) 1-x, 2-y, 1-z.

Table S5. Hydrogen bonds for form B of 5,5-dibromobarbituric acid (3b; F-2).

	D–H···A	$d(D-\mathrm{H})$ / Å	$d(\operatorname{H}\cdots A) / \operatorname{\AA}$	$d(D\cdots A) / \mathring{A}$	$\angle(DHA) / ^{\circ}$
а	N1A–H1A····O2A ⁱ	0.88(2)	1.97(2)	2.840(6)	168(5)
b	N3A-H3A…O4B	0.87(2)	2.02(4)	2.789(6)	146(5)
с	N1B-H1B··· O4A ⁱⁱ	0.89(2)	1.97(2)	2.860(6)	178(6)
d	N3B-H3B···· O2B ⁱⁱⁱ	0.88(2)	1.94(2)	2.820(7)	173(6)

Symmetry transformations used to generate equivalent atoms: (i) -x+1, -y+1, -z+1 (ii) x, -y+3/2, z-1/2 (iii) -x, -y+1, -z.

2. Second-level graph-set representations¹ of H-bonded structures

Table S6. Graph-set representation¹ of L-4 (crystal structure 1, Z' = 1). For the definition of *a* and *b*, see Table S1.

а
> <i>b</i> > <i>b</i>
> <i>a</i> > b
> a < b
> a > b < a < b
> a > a > b > a > a > b
> a > a > b > a > a < b
> a > a < b > a > a < b

Table S7. Graph-set representation¹ of L-6 (crystal structure 2a, Z' = 4). For the definition of *a*-*h*, see Table S2.

D ¹ (2)	а
D1(2)	b
D1(2)	с
D1(2)	d
D1(2)	е
D1(2)	f
D1(2)	g
D1(2)	h
D22 (6)	> a > d
D22(6)	> c > b
D ₂ ² (6)	> e > h
D22(6)	>g>f
D ₂ ² (7)	< <i>a</i> > <i>b</i>

D ₂ ² (7)	< <i>c</i> > <i>d</i>
D2(7)	< e > f
D ₂ ² (7)	< g > h
D2 ² (7)	> <i>a</i> < <i>f</i>
D ₂ ² (7)	> b < e
D2 ² (7)	> c < h
D ₂ ² (7)	> d < g
₽ <mark>2 (8)</mark>	> b > g
D ₂ ² (8)	> d > e
D ₂ ² (8)	>f >c
D2 ² (8)	> h > a
c22(8)	> b > h
c22(8)	> d > f
R22(8)	> a > c
R22(8)	> e > g

D11(2)	b			
D1(2)	d			
D11(2)	f			
c11(6)	а			
¢ <mark>1(6)</mark>	С			
к <mark>2</mark> (8)	> e > e			
D ₂ ¹ (3)	> <i>d</i> < <i>f</i>			
D ₂ ² (6)	>f>b	Table S9. Graph definition of <i>a-d</i> ,	n-set representation ¹ of F-2 (crystal stru see Table S5.	acture 3b , $Z' = 2$). For the
к <mark>2</mark> (8)	> <i>b</i> > <i>d</i>			
D3 (11)	< <i>b</i> > a > <i>b</i>	D1(2)	b	
D ³ 8(11)	< <i>d</i> > c > <i>d</i>	D1(2)	с	
$D_3^3(11)$	< <i>f</i> >e> <i>f</i>	<mark>в2</mark> (8)	> a > a	
D ^S 3(11)	> b > c < b	в <mark>2</mark> (8)	> <i>d</i> > <i>d</i>	
D ³ 3(11)	> <i>d</i> > a < <i>d</i>	c22 (8)	> <i>b</i> > <i>c</i>	
D ² 3(11)	>f>a <f< th=""><th>$D_3^3(11)$</th><th>< <i>b</i> > <i>a</i> > <i>b</i></th><th></th></f<>	$D_3^3(11)$	< <i>b</i> > <i>a</i> > <i>b</i>	
		$D_{3}^{3}(11)$	< <i>c</i> > <i>d</i> > <i>c</i>	
3. XPac	comparison between	D ₃ ³ (13)	> <i>b</i> > <i>d</i> < <i>b</i>	2a and 3b
-		$D_{S}^{3}(13)$	> c > a < c	

Table S8. Graph-set representation¹ of L-5 (crystal structures **2b** and, **3a**, Z' = 3). For the definition of *a-f*, see Tables S3 and S4.

S-5

Fig. S1 The isostructural relationship between 2b and 3a is indicated by a low XPac dissimilarity index, x = 2.6. XPac plot² for a representative cluster of 37 molecules (n = 36). The δ parameters were calculated from all non-H atomic positions (p = 11).

4. H-bonded structures L-2 and L-3

Fig. S2 Schematic representation of the N-H \cdots O=C bonded 2D extended structures L-2 (form II of barbituric acid) and L-3 (phenobarbital I and II). The applied style is explained in the insert of Fig. 1.

References

1.	J. Bernstein, R. E. Davis, L. Shimoni and NL. Chang, Angew. Chem. Int. Ed., 1995, 34, 1555-1573.
2.	(a) T. Gelbrich and M. B. Hursthouse, <i>CrystEngComm</i> , 2005, 7 , 324-336; (b) F. P. A. Fabbiani, B. Dittrich, A. J.
	Florence, T. Gelbrich, M. B. Hursthouse, W. F. Kuhs, N. Shankland and H. Sowa, CrystEngComm, 2009, 11, 1396-
	1406.