Electronic Supplementary Information (ESI)

Seemingly simple group 8 cyclopentadienyl metal halides: From little things, interesting things grow.[†]

Rebecca O. Fuller, Christopher S. Griffith, George A. Koutsantonis, Kim M. Lapere, Brian W. Skelton, Mark A. Spackman, Allan H. White^{*a*} and Duncan A. Wild.

Table S1. Comparative geometries, $[CpM(CO)_2Cl]$ (M = Fe, Ru, Os) Data for the Fe compound, ref.¹⁰, other: this work

М	Fe (295 K) ¹⁰	Ru (296 K)	Os
Distances (Å)			
M-C(Cp)	2.046(8)	2.191(3)	2.202(6)
	-2.097(7)	-2.258(3)	-2.299(6)
<>	2.069	2.223	2.247
M-C(0)(Cp)	1.71 ₂	1.872	1.888
M-C(CO)	1.774(5),	1.883(3),	1.884(6),
	1.767(6)	1.890(3)	1.896(6)
M-Cl	2.288(2)	2.4110(8)	2.4153(14)
Angles (degrees)			
C(0)-M-Cl	122.8	123.3	121.37
C(0)-M-C(CO)	122.9,	124.6,	124.0 ₁ ,
	125.2	126.4	127.39
C(CO)-M-C(CO)	94.0(3)	91.01(4)	90.4(3)
Cl-M-C(CO)	91.8(2),	90.81(11),	92.6(2),
	91.1(2)	90.24(9)	91.2(2)

*Values cited pertain to the major component of the chlorine atom and to the non-disordered carbonyl carbon. The $P2_1/n$ phase is common to both Ru and Os analogues; however, the determination of the Ru complex was executed at 296 K.

(a) Cp complexes							
X ^(Ref)	Cl	Br $(296 \text{ K})^1$	Br·S $(\alpha)^{16}$	Br·S (β)(mol.1) ¹⁶	$(mol.2)^{16}$	I (173 K) ^{3,†}	Cl(Os)*
Distances (Å)							
Ru-C(Cp)	2.191(3)	2.16(2)	2.186(8)	2.208(6)	2.196(7)	2.213(8)	2.202(6)
	-2.258(3)	-2.26(3)	-2.240(5)	-2/263(7)	-2.260(7)	-2.271(3)	-2.299(6)
<>	2.223	2.22	2.21_4	2.235	2.229	2.24	2.247
Ru-C(0)(Cp)	1.872	1.87	1.87_{0}	1.88_0	1.879	1.88_{8}	1.888
Ru-C(CO)	1.883(3),	1.895(16),	1.884(8),	1.902(7),	1.887(7),	1.869(6),	1.884(6),
	1.890(3)	1.853(17)	1.922(7)	1.883(7)	1.891(8)	1.865(6)	1.896(6)
Ru-X	2.4110(8)	2.536(2)	2.5468(11)	2.5297(8)	2.5463(8)	2.7009(6)	2.4153(14)
Angles (degrees)							
C(0)-Ru-X	123.3 ₀	123. ₃	121.7	123.2	122.7	120.5	121.4
C(0)-Ru-C(CO)	124.6,	125.3,	124.1,	126. ₀ ,	125.3,	126.3,	124.0,
	126.4	126. ₂	125.5	127.6	125.9	126.7	127.4
C(CO)-Ru-C(CO)	91.01(14)	91.0(7)	93.7(3)	91.9(3)	92.3(3)	92.1(3)	90.4(3)
X-Ru-C(CO)	90.81(11),	90.8(5),	91.2(3),	88.1(2),	90.8(2),	90.9(2),	92.6(2),
	90.24(9)	89.7(5)	91.1(3)	87.8(2)	89.5(2)	89.9(2)	91.2(2)

Table S2. Comparative geometries, $[Cp^{()}Ru(CO)_2X] (X = Cl, Br, I)^*$

*Data for the Os, Cl complex is also included. [†]Data for the major component (Cp disordered).

(b) Cp' complexes

X ^(Ref)	Cl	Br (298 K) ¹²	Br*	I (298 K) ¹²	Ι
Distances (Å)					
Ru-C(Cp')	2.191(2)	2.183(5)	2.201(2)	2.188(7)	2.189(4)
	-2.300(2)	-2.303(7)	-2.288(2)	-2.306(10)	-2.303(4)
<>	2.24	2.23	2.24	2.24	2.24
Ru-C(0)(Cp')	1.87 ₈	1.877	1.881	1.887	1.883
Ru-C(CO)	1.893(2),	1.885(6),	1.895(2),	1.874(8),	1.893(4),
	1.892(2)	1.881(6)	1.881(6)	1.882(9)	1.892(4)
Ru-X	2.4062(5)	2.535(2)	2.5005(6)	2.7030(4)	2.7104(6)
Angles (degrees)					
C(0)-Ru-X	121.8	122.6	123.0	123.1	122.8
C(0)-Ru-C(CO)	125. ₆ ,	124.2,	125.3,	124.9,	124.3
	125.5	127.7	126.8	127.5	128.1
C(CO)-Ru-C(CO)	91.77(8)	90.4(3)	91.1(2)	90.6(4)	90.7(2)
X-Ru-C(CO)	90.94(6),	92.6(2),	90.9(8),	91.6(3),	92.0(1),
	91.36(7)	88.8(2)	88.9(2)	88.2(3)	88.1(1)

*Values quoted for the present bromide are for the major component of disorder. The values for the iodide

redetermination are harmonious with the previous,¹² but offer improved precision at lower temperature.

Table S3. Coordination geometries, [Cp^xRu(CO)₂Cl]

Cp ^x /X	Cp/Cl	Cp'/Cl	$Cp*/Cl(P2_1/n)$	$Cp^*/Cl(P1)$	Cp*/Me
Distances (Å)					
Ru-C(Cp)	2.191(3)	2.191(2)	2.200(1)	2.212(2)	2.253(1)
	-2.258(3)	-2.300(2)	-2.247(1)	-2.264(2)	-2.280(1)
<>	2.223	2.237	2.234	2.241	2.267
Ru-C(0)(Cp)	1.872	1.87 ₈	1.868	1.877	1.909
Ru-C(CO)	1.883(7),	1.893(2),	1.887(2),	1.852(4),	1.877(1),
	1.890(3)	1.892(2)	1.891(2)	-1.866(9)	1.880(1)
Ru-X	2.4110(8)	2.4062(5)	2.4315(4)	2.4407(11)	2.144(2)
Angles (degrees)					
C(0)-Ru-X	123.3	121.8	120.1	120.6	121.0
C(0)-Ru-C(CO)	124. ₆ ,	125.6,	124.7,	124.5,	128.2,
	126.4	125.5	124.4	126.4	127.7
C(CO)-Ru-C(CO)	91.01(14)	91.77(8)	92.52(7)	90.73(10)	90.32(5)
X-Ru-C(CO)	90.81(11),	90.94(6),	92.34(5),	93.08(5),	87.92(6),
	90.24(9)	91.36(7)	94.24(5)	92.28(12)	89.76(6)

Data for $[Cp*Ru(CO)_2Me]$ are included for comparison

*Major component

Table S4. Coordination geometries, $[Cp^{Ph}Ru(CO)_2X]$ (X = Cl, I)

Values for the Cp counterparts are	included for comparison.	also that for [Cp ^{Ph} Ru(CO) ₂ H]($\cdot \frac{1}{2}CH_{2}Cl_{2}$
	menade for companious,		, = 0 = = 2 = 2)

Cp ^x /X	Cp/Cl	$Cp^{Ph}/Cl(\cdot \frac{1}{2}CH_2Cl_2)$ (mols. 1,2)	Cp/I	Cp^{Ph}/I^{14}	Cp ^{Ph} /H ¹⁴	
Distances (Å)						
Ru-C(Cp)	2.191(3)	2.211(3); 2.212(3)	2.213(8)	2.234(3)	2.251(3)	
	-2.258(3)	-2.310(3; -2.321(3)	-2.271(3)	-2.317(3)	-2.286(3)	
<>	2.223	2.26; 2.25	2.24	2.265	2.27	
Ru-C(0)(Cp)	1.872	$1.90_0, 1.89_1$	1.883	1.902	1.91 ₁	
Ru-C(CO)	1.883(7),	1.881(5), 1.879(5))	1.869(6),	1.866(4),	1.795(5)	
	1.890(3)	1.912(4); 1.889(5)	1.865(6)	1.879(4)	1.811(5)	
Ru-X	2.4110(8)	2.4118(11); 2.3967(10)	2.7009(6)	2.7230(4)	1.55(3)	
Angles (degrees)						
C(0)-Ru-X	123.3	124.7, 123.1	120.5	$128{0}$	125	
C(0)-Ru-C(CO)	124.6	127.3, 127.4	126.3	126. ₈	133.4	
	126.4	128.7, 128.0	126.7	127.6	130.9	
C(CO)-Ru-(CO)	91.01(14)	87.10(6); 89.0(2)	92.1(3)	90.61(18)	89.3(2)	
X-Ru-C(CO)	90.81(11)	88.74(12); 89.51(13)	90.9(2),	84.23(12)	74.9(10)	
	90.24(9)	87.16(14); 87.60(16)	89.9(2)	85.55(13)	82.8(10)	

Table S5 Theoretical Geometric Parameters for the Ru(MeCp)(CO)₂X complexes, where X = Cl, Br, and I calculated at the MP2 level of theory with 6-311G basis sets for C, H, O, Cl, and Br, and the LANLDZ basis set and ECP for Ru and I. Provided are bond lengths in Ångström and bond angles in degrees.

	r(Ru-X)	r(Ru-CO)	r(Ru-Cp)	∠(X-Ru-CO)	∠(CO-Ru-CO)	∠(X-Ru-Cp)	r(C-H)Cp	R(C-C)	R(C-H)Me
Chloro	2.474	1.866	1.927	90.0	90.9	119.4	1.082	1.496	1.097
							1.081		1.093
Bromo	2.549	1.862	1.930	89.7	90.9	119.7	1.082	1.497	1.097
							1.081		1.093
Iodo	2.719	1.858	1.938	89.7	90.9	119.9	1.082	1.498	1.098
							1.081		1.093

Figure S1. The optimised geometries of the one of the complexes is shown above.

Tables S6-S8: Calculated Atomic charges for the Chloro, Bromo, and Iodo complex, at the MP2 level of theory. Charges on hydrogens have been summed onto the associated Carbon atom. Also provided are the sums of the C and O charges for the carbonyls ligands.

[Note: The numbering of the carbons starts with the C attached to the methyl, and then goes clockwise looking down from the top C10 is the methyl carbon]

ble S5: Chloro data				
	Mulliken	NBO	Hirshfeld	
C1	3.16E-4	0.06704	0.00805	
C2	-0.01402	0.01172	0.01242	
C3	-0.01507	0.02448	0.0146	
C4	-0.01506	0.0245	0.01461	
C5	-0.0141	0.02448	0.01236	
H6	0.0	0.0	0.0	
H7	0.0	0.0	0.0	
H8	0.0	0.0	0.0	
H9	0.0	0.0	0.0	
C10	0.07197	0.05185	0.06609	
H11	0.0	0.0	0.0	
H12	0.0	0.0	0.0	
H13	0.0	0.0	0.0	
Ru14	0.46512	-0.07675	0.15135	
Cl15	-0.49928	-0.47787	-0.47642	

Та

C16	0.17756	0.40526	0.22661
017	-0.1675	-0.22356	-0.12831
СО	0.01006	0.1817	0.0983
Sum			
C18	0.17756	0.40527	0.2266
019	-0.1675	-0.22356	-0.12831
СО	0.01006	0.18171	0.09829
Sum			

Table S6: Bromo data

	Mulliken	NBO	Hirshfeld
C1	-9.31E-4	0.06662	0.00346
C2	-0.01707	0.01032	0.00797
C3	-0.01349	0.02842	0.01486
C4	-0.01341	0.02853	0.01495
C5	-0.01714	0.01017	0.0079
H6	0.0	0.0	0
H7	0.0	0.0	0
H8	0.0	0.0	0
H9	0.0	0.0	0
C10	0.06673	0.04757	0.06177
H11	0.0	0.0	0
H12	0.0	0.0	0
H13	0.0	0.0	0
Ru14	0.32627	-0.20946	0.10779
Br15	-0.3293	-0.33116	-0.37894
C16	0.17399	0.40512	0.21658
017	-0.17481	-0.23062	-0.13649
CO	-8.2E-4	0.1745	0.08009
Sum			
C18	0.17398	0.40511	0.21657
019	-0.17481	-0.23062	-0.13649
CO	-8.3E-4	0.17449	0.08008
Sum			

Table S7: Iodo Data

	Mulliken	NBO	Hirshfeld
C1	-0.136451	0.03151	0.03441
C2	0.126526	0.00766	0.01956
C3	-0.052017	0.05636	0.0429
C4	-0.052045	0.05640	0.04291
C5	0.126479	0.00760	0.01947
H6	-0.010958	-0.85450	-0.01754
H7	0.0	0.0	0
H8	0.0	0.0	0
H9	0.0	0.0	0
C10	0.059514	0.08465	0.07486
H11	0.0	0.0	0.0
H12	0.0	0.0	0
H13	0.0	0.0	0
Ru14	0.0	0.0	0
I15	-0.120405	-0.19879	-0.36923

C16	0.427693	0.94037	0.25552
017	-0.398022	-0.53581	-0.17888
СО	0.029671	0.40456	0.07664
Sum			
C18	0.427700	0.94037	0.25553
019	-0.398014	-0.53581	-0.17888
CO	0.029686	0.40456	0.07665
Sum			

- 1. K. J. Jens and E. Weiss, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 1985, C41, 895-896.
- 2. H. Adams, N. A. Bailey and C. White, *Inorg. Chem.*, 1983, 22, 1155-1158.
- 3. R. O. Fuller, C. S. Griffith, G. A. Koutsantonis, K. M. Lapere, B. W. Skelton, M. A. Spackman, A. H. White and D. A. Wild, *CrystEngComm*, 2011.
- 4. M. D. Bala, A. Munyaneza and N. J. Coville, *Acta Cryst. E*, 2006, **62**, m1538-m1539.
- 5. D. Duraczynska and J. H. Nelson, *Dalton Trans.*, 2003, 449-457.