Supplementary information

Fig. SI1. XRD and TGA analysis of nanobelts. (a) an XRD pattern of V_2O_5 nanobelts asprepared and vacuum - heated (180°C, 10⁻⁵ atm), (b) an application of first derivatives of DSC and weight loss signals (dDSC/dT and dm/dT) to split a TG curve into regions associated with different water binding modes.

Fig. SI2. Raman scattering spectrum of as-prepared vanadia nanobelts dried at 50°C in air. Spectrum is similar to crystalline α -V₂O₅ (R. Baddour-Hadjean, E. Raekelboom, J.P. Pereira-Ramos, *Chem Mater*, 2006, **18**, 3548-3556).

Fig. SI3. SEM images of SEI (solid-electrolyte interface) passive films grown on the vanadia nanobelts during first lithium intercalation semi-cycle. Cathode material (a) and a close-up of vanadia nanobelt surface (b) discharged to 2.15 V vs. Li^0/Li^+ , (c) a nanocomposite material with stable cycling due to prevention of the growth of SEI achieved for the same vanadia nanobelts coated with carbon.

Ref.	Material	Discharge rate	Voltage range, V	Discharge capacity, mAh/h		Number of cycles
				1 st cycle	10 th cycle	shown
1	Vanadium	0.1	2.0 - 4.0	180	115	10
	oxide	mA/cm ²				
	nanofibers					
2	$NH_4V_4O_{10}$	12.5	2.0 - 3.4	165	110	17
	nanobelts ²	mA/g				
3	Nano-V ₂ O ₅ ³	0.1	1.75 –	375	270	25
		mA/cm ²	4.0			
4	V_2O_5	440 mA/g	1.5 –	430	330	50
	nanoribbons ⁴		3.75			
5	V ₂ O ₅	150 mA/g	2.0 - 4.0	275	250	30
	nanorods ⁵					
6	V ₂ O ₅	10 mA/g	1.5 – 3.5	340	275	50
	nanorods ⁶					
7	V ₂ O ₅ /CNT	560 mA/g		440	430	20
	composite ⁷					
This	V ₂ O ₅	20 mA/g	2.15 -	500	450	20

Table SI1. Comparison of discharge capacities of different vanadia-based materials

work	nanobelts		4.0				
This	V_2O_5	200 mA/g	2.15 -	400	370	20	
work	nanobelts		4.0				

- 1. S. Lutta, H. Dong, P. Zavalij and M. Whittingham, *Mater Res Bull*, 2005, **40**, 383-393.
- 2. K. Zhang, G. Zhang, X. Liu, Z. Su and H. Li, J Power Sources, 2006, 157, 528-532.
- 3. C. Ban, N. Chernova and M. S. Whittingham, *Electrochem Commun*, 2009, **11**, 522-525.
- 4. S.-L. Chou, J.-Z. Wang, J.-Z. Sun, D. Wexler, M. Forsyth, H.-K. Liu, D. R. MacFarlane and S.-X. Dou, *Chem Mater*, 2008, **20**, 7044-7051.
- 5. A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B. W. Arey, G. Li, S.-q. Liang and J. Liu, *J Mater Chem*, 2010, **20**, 9193-9199.
- 6. A. M. Glushenkov, M. F. Hassan, V. I. Stukachev, Z. Guo, H. K. Liu, G. G. Kuvshinov and Y. Chen, *J Solid State Electrochem*, 2010, **14**, 1841-1846.
- 7. J. Sakamoto, B. Dunn, J Electrochem Soc, 2002, 149, A26–A30.