Supplementary Information

A novel class of oligomeric and polymeric d^{10} metal complexes of asymmetrical N-heterocyclic ligand with strong π stacking and hydrogen bonding, syntheses,

structures and photoluminescence

Wang Jing-lin, Liu Bin and Yang Bin-sheng *

Key Laboratory of Chemical Biology and Molecular Engineering of the Ministry of Education, Institute of

Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Figure S1. In *ab* plane, the 2-D sheet of alternating chirality is composed of 1-D chains for 2.

Figure S2. Showing the offset face-to-face $\pi \cdots \pi$ stacking interactions between ligands moieties of **3** in (011) plane (all distances in Å). Hydrogen-bonding interactions are represented by pink dashed lines.

1								
N(1)-C(1) 1.271(2)	O(1)-C(7) 1.218(2)	C(1)-C(2) 1.465(3)						
N(1)-N(2) 1.370(2)	N(2)-C(7) 1.355(2)	C(7)-C(8) 1.475(3)						
C(1)-N(1)-N(2) 116.30(16)	O(1)-C(7)-C(8) 122.76(18)	N(1)-C(1)-C(2) 119.21(18)						
C(7)-N(2)-N(1) 118.27(16)	O(1)-C(7)-N(2) 123.22(18)	C(9)-C(8)-C(7) 130.37(17)						
2								
Zn(1)-N(2) 2.110(3)	Zn(1)-Cl(2) 2.2897(11)	N(1)-C(1) 1.371(4)						
Zn(1)-N(5) 2.153(3)	Zn(1)-O(1) 2.336(2)	N(2)-C(7) 1.275(4)						
Zn(1)-Cl(1) 2.2059(10)	N(1)-N(2) 1.359(3)	O(1)-C(1) 1.226(4)						
N(2)-Zn(1)-N(5) 75.35(10)	N(5)-Zn(1)-O(1) 144.83(10)	C(1)-O(1)-Zn(1) 113.2(2)						
N(2)-Zn(1)-Cl(1) 135.51(8)	Cl(1)-Zn(1)-O(1) 97.34(7)	N(2)-N(1)-C(1) 115.0(3)						
N(5)-Zn(1)-Cl(1) 100.89(8)	Cl(2)-Zn(1)-O(1) 93.50(8)	C(7)-N(2)-N(1) 122.3(3)						
N(2)-Zn(1)-Cl(2) 106.00(8)	C(7)-N(2)-Zn(1) 118.3(2)	O(1)-C(1)-N(1) 120.5(3)						
N(5)-Zn(1)-Cl(2) 104.09(8)	N(1)-N(2)-Zn(1) 119.2(2)	O(1)-C(1)-C(2) 125.3(3)						
Cl(1)-Zn(1)-Cl(2) 117.61(4)	C(12)-N(5)-Zn(1) 127.7(2)	N(2)-C(7)-C(8) 116.4(3)						
N(2)-Zn(1)-O(1) 70.56(10)	C(8)-N(5)-Zn(1) 114.6(2)							
	3							
Cd(1)-N(1) 2.322(3)	Cd(1)-Cl(1) 2.7077(10)	N(2)-C(6) 1.274(4)						
Cd(1)-N(2) 2.411(3)	Cd(1)-Cl(2) ⁱⁱ 2.7898(10)	N(2)-N(3) 1.360(4)						
Cd(1)-Cl(1) ⁱ 2.5276(9)	$Cl(1)-Cd(1)^{i}$ 2.5276(9)	N(3)-C(7) 1.377(5)						
Cd(1)-Cl(2) 2.5716(9)	Cl(2)-Cd(1) ⁱⁱ 2.7898(10)	O(1)-C(7) 1.218(4)						
N(1)-Cd(1)-N(2) 69.09(10)	Cl(1) ⁱ -Cd(1)-Cl(1) 84.14(3)	Cd(1) ⁱ -Cl(1)-Cd(1) 95.86(3)						
N(1)-Cd(1)-Cl(1) ⁱ 94.19(7)	Cl(2)-Cd(1)-Cl(1) 93.10(3)	Cd(1)-Cl(2)-Cd(1) ⁱⁱ 96.27(3)						
N(2)-Cd(1)-Cl(1) ⁱ 161.19(7)	N(1)-Cd(1)-Cl(2) ⁱⁱ 84.01(7)	C(1)-N(1)-Cd(1) 123.1(2)						
N(1)-Cd(1)-Cl(2) 153.80(8)	N(2)-Cd(1)-Cl(2) ⁱⁱ 89.43(7)	C(5)-N(1)-Cd(1) 118.4(2)						
N(2)-Cd(1)-Cl(2) 87.72(7)	Cl(1) ⁱ -Cd(1)-Cl(2) ⁱⁱ 97.57(3)	C(6)-N(2)-N(3) 125.0(3)						
Cl(1) ⁱ -Cd(1)-Cl(2) 110.32(3)	Cl(2)-Cd(1)-Cl(2) ⁱⁱ 83.73(3)	C(6)-N(2)-Cd(1) 117.5(2)						
N(1)-Cd(1)-Cl(1) 98.64(7)	Cl(1)-Cd(1)-Cl(2) ⁱⁱ 176.76(3)	N(3)-N(2)-Cd(1) 117.4(2)						
N(2)-Cd(1)-Cl(1) 89.77(7)								
4								
Hg(1)-Cl(1) 2.347(6)	Hg(2)-Cl(4) 2.351(6)	N(3)-N(4) 1.37(2)						
	$H_{\alpha}(2) N(10) = 2.465(17)$	N(4)-C(7) 1.25(2)						

Table S1. Selected bond lengths (Å) and bond angles (deg) for compounds 1--5

Hg(1)-N(4)	2.502	(16)	Hg(2)-N(9)	2.48	8(16)	N(8)-C(13)	1.35(2)		
Hg(1)-N(5)	2.515	(16)	Hg(2)-O(6) 2.708(15)		O(6)-C(13)	1.23(2)			
Hg(1)-O(3)	2.738	(15)	N(3)-C(1) 1.34(2)		N(8)-N(9)	1.38(2)			
Hg(2)-Cl(3)	2.350)(7)	O(3)-C(1) 1.22(2)		N(9)-C(19)	1.26(2)			
Cl(1)-Hg(1)-Cl	(2)	149.2(2)	Cl(3)-Hg(2)-C	l(4)	152.3(2)	C(7)-N(4)-Hg(1)	119.2(13)		
Cl(1)-Hg(1)-N	(4)	103.5(4)	Cl(3)-Hg(2)-N	(10)	92.5(5)	N(3)-N(4)-Hg(1)	119.8(12)		
Cl(2)-Hg(1)-N	(4)	104.5(4)	Cl(4)-Hg(2)-N	(10)	110.8(5)	C(8)-N(5)-Hg(1)	116.8(13)		
Cl(1)-Hg(1)-N	(5)	91.4(4)	Cl(3)-Hg(2)-N	(9)	99.6(4)	C(12)-N(5)-Hg(1) 123.5(14)		
Cl(2)-Hg(1)-N	(5)	111.9(4)	Cl(4)-Hg(2)-N	(9)	103.4(4)	C(19)-N(9)-Hg(2	2) 119.6(13)		
N(4)-Hg(1)-N(5)	65.1(5)	N(10)-Hg(2)-N	J(9)	65.9(5)	N(8)-N(9)-Hg(2)	122.7(11)		
Cl(1)-Hg(1)-O	(3)	92.4(4)	Cl(3)-Hg(2)-O	(6)	91.2(4)	C(20)-N(10)-Hg	(2) 117.5(12)		
Cl(2)-Hg(1)-O	(3)	90.4(4)	Cl(4)-Hg(2)-O	(6)	86.9(4)	C(24)-N(10)-Hg	(2) 124.2(14)		
N(4)-Hg(1)-O(3)	60.3(5)	N(10)-Hg(2)-C)(6)	126.1(5)	C(1)-O(3)-Hg(1)	116.0(13)		
N(5)-Hg(1)-O(3)	124.6(5)	N(9)-Hg(2)-O((6)	60.5(5)	C(13)-O(6)-Hg(2	2) 116.0(13)		
5									
K(1)-O(6) ⁱⁱⁱ	2.7	71(5)	K(1)-O(3) ^{iv}	2.	878(4)	K(1)-O(2) ^{iv}	3.018(4)		
K(1)-O(1) 2.775(4)		K(1)-N(5) 2.909(5)		K(1)-O(4')	3.02(4)				
K(1)-O(5') 2.83(6)		K(1)-O(4) 2.91(3)		K(1)-O(5)	3.17(2)				
K(1)-N(2)	2.8	40(5)							
O(6) ⁱⁱⁱ -K(1)-O(1)	87.33(14)	N(2)-K(1)-O(4)	87.8(8)	N(5)-K(1)-O(5)	123.4(5)		
O(6) ⁱⁱⁱ -K(1)-N((2)	89.64(14)	O(3) ^{iv} -K(1)-O((4)	100.4(6)	O(4)-K(1)-O(5)	42.4(6)		
O(1)-K(1)-N(2)	56.97(12)	N(5)-K(1)-O(4)	86.6(6)	O(2) ^{iv} -K(1)-O(5)	92.9(11)		
O(6) ⁱⁱⁱ -K(1)-O((3) ^{iv}	77.47(14)	O(6) ⁱⁱⁱ -K(1)-O((2) ^{iv}	88.15(13)	O(6) ⁱⁱⁱ -K(1)-N(4)	^{iv} 83.32(13)		
O(1)-K(1)-O(3) ^{iv}	161.44(14)	O(1)-K(1)-O(2	2) ^{iv}	127.09(12)	O(1)-K(1)-N(4) ^{iv}	147.19(13)		
N(2)-K(1)-O(3) ^{iv}	132.37(13)	N(2)-K(1)-O(2	2) ^{iv}	175.24(13)	N(2)-K(1)-N(4) ^{iv}	153.65(13)		
O(6) ⁱⁱⁱ -K(1)-N(5)	87.55(14)	O(3) ^{iv} -K(1)-O((2) ^{iv}	42.95(12)	$O(3)^{iv}-K(1)-N(4)$	^{iv} 21.30(11)		
O(1)-K(1)-N(5)	114.03(13)	N(5)-K(1)-O(2	2) ^{iv}	118.39(12)	N(5)-K(1)-N(4)iv	w 96.96(13)		
N(2)-K(1)-N(5)	57.27(13)	O(4)-K(1)-O(2) ^{iv}	94.0(8)	O(4)-K(1)-N(4) ^{iv}	96.7(8)		
O(3) ^{iv} -K(1)-N(5)	76.31(13)	O(6) ⁱⁱⁱ -K(1)-O((5)	143.0(4)	$O(2)^{iv}-K(1)-N(4)$	^{iv} 21.70(11)		
O(6) ⁱⁱⁱ -K(1)-O((4)	174.1(6)	N(2)-K(1)-O(5	6)	91.4(11)	O(5)-K(1)-N(4) ^{iv}	109.3(11)		
O(1)-K(1)-O(4)	95.7(6)	O(3) ^{iv} -K(1)-O((5)	125.7(11)				

Symmetry transformations used to generate equivalent atoms: i [-x, 1-y, 1-z]; ii [1-x, 1-y, 1-z];

iii [x, 3/2-y, -1/2+z]; iv [1+x, y, z].

<i>D</i> -Н	<i>d</i> (<i>D</i> -H)	$d(\mathbf{H}\cdots A)$	$\angle D HA$	$d(D \cdots A)$	A				
1									
C(12) –H(12B)	0.960	2.566	95.19	2.819	O(1)				
C(12) -H(12C)	0.960	2.648	90.20	2.819	O(1)				
C(4) –H(4)	0.930	2.574	172.01	3.498	O2[1+ <i>x</i> , <i>y</i> , 1+ <i>z</i>]				
C(11) –H(11)	0.930	2.558	149.98	3.395	O2[-x, -y, -z]				
C(6) –H(6)	0.930	2.655	169.19	3.573	O3[2- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>]				
N(2) –H(2)	0.860	2.046	154.69	2.847	O(4)				
O(4) –H(4A)	0.850	2.013	178.84	2.863	N(3) [2- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>]				
O(4) –H(4B)	0.850	2.276	146.51	3.021	O(1) [1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>]				
O(4) –H(4B)	0.850	2.500	129.89	3.114	O(1) [<i>x</i> , 1+ <i>y</i> , <i>z</i>]				
C(9)–H(9)	0.930	2.463	149.03	3.295	O(4)				
C(1) –H(1)	0.930	2.597	135.37	3.324	O(4)				
			2						
N(1)–H(1)	0.860	2.420	156.19	3.227	Cl(2) [- <i>x</i> , 2- <i>y</i> , - <i>z</i>]				
C(3)–H(3)	0.930	2.760	150.46	3.598	Cl(2) [-x, 2-y, -z]				
C(9)–H(9)	0.930	2.708	163.45	3.609	Cl(1) [<i>x</i> , 1.5- <i>y</i> , -0.5+ <i>z</i>]				
C(11)–H(11)	0.930	2.472	167.16	3.385	O(3) [-1+ <i>x</i> , -1+ <i>y</i> , <i>z</i>]				
C(12)-H(12)	0.930	2.804	132.34	3.499	O(2) [-1+ <i>x</i> , -1+ <i>y</i> , <i>z</i>]				
			3						
C(6)–H(6)	0.930	2.261	121.87	2.863	O(1)				
N(3)–H(3)	0.860	2.528	142.08	3.250	Cl(2)				
C(11)–H(11)	0.930	2.876	162.55	3.774	Cl(1)[1- <i>x</i> , 1- <i>y</i> , - <i>z</i>]				
C(3)–H(3A)	0.930	2.674	149.30	3.506	Cl(1)[- <i>x</i> , - <i>y</i> , 1- <i>z</i>]				
C(3)–H(3A)	0.930	2.661	123.85	3.271	O(2)[1+ <i>x</i> , 1+ <i>y</i> , -1+ <i>z</i>]				
C(2)–H(2)	0.930	2.676	122.71	3.273	O(2)[1+ <i>x</i> , 1+ <i>y</i> , -1+ <i>z</i>]				
			4						
N(3)–H(3)	0.860	1.968	163.88	2.805	O(8) [1+ <i>x</i> , <i>y</i> , <i>z</i>]				
C(3)–H(3A)	0.930	2.332	152.04	3.184	O(8)[1+ <i>x</i> , <i>y</i> , <i>z</i>]				
C(10)-H(10)	0.930	2.417	139.84	3.180	O(1)[x, y, -1+z]				
N(8)–H(8)	0.860	1.943	168.17	2.788	O(7) [1+ <i>x</i> , <i>y</i> , <i>z</i>]				
C(15)–H(15)	0.930	2.353	152.08	3.204	O(7) [1+ <i>x</i> , <i>y</i> , <i>z</i>]				
C(26)–H(26C)	0.930	2.801	163.33	3.731	Cl(4)				
C(21)–H(21)	0.930	2.775	161.64	3.670	Cl(3) [2-x, 1-y, 1-z]				
C(22)–H(22)	0.930	2.483	143.14	3.278	O(4) [<i>x</i> , <i>y</i> , -1+ <i>z</i>]				
C(7)–H(7)	0.930	3.035	140.43	3.798	Cl(1) [1- <i>x</i> , - <i>y</i> , - <i>z</i>]				
C(9)–H(9)	0.930	2.949	149.43	3.780	Cl(1) [1- <i>x</i> , - <i>y</i> , - <i>z</i>]				
5									
N(1) –H(1)	0.860	2.322	143.52	3.057	O(6) [1- <i>x</i> , -1/2+ <i>y</i> , 3/2- <i>z</i>]				
N(1) –H(1)	0.860	2.416	157.39	3.233	O(5A) [1- <i>x</i> , -1/2+ <i>y</i> , 3/2- <i>z</i>]				

Table S2. Shortest D…A distances (Å) and angles (deg) for 1--5

Figure S3. The $\pi \cdots \pi$ interactions between the I and II type molecule for 4

Figure S4. 1-D chains are assembled through H-bonding and $\pi \cdots \pi$ interactions to 2-D network in *bc* plane for **I** type molecule (a) and in *ac* plane for **II** type molecule (b) (all distances in Å). The N,N-Dimethylformamide solvent molecules and H atoms not involved in hydrogen bonds have been omitted for clarity.

The 1-D chains of **I** type molecule (*b*-axis direction) are assembled by intermolecular H-bonds C(10)-H(10)...O(1)(x, y, -1+z) of 2.417 Å and weak π ··· π interactions (nitro) N(2)...(pyrrolyl) centroid(1-x, -y, 1-z) of 3.990 Å to form 2-D sheets of parallel staircases in *bc* plane. However, 1-D chains of **II** type molecule (*a*-axis direction) formed 2-D sheets in *bc* plane with stronger π ··· π interactions.

Figure S5. The UV spectra from MeOH solutions of the pure complexes 2-4 $([M^{2+}]=2.0\times10^{-5}M)).$

Figure S6. The variation of spectra upon addition of a small quantity solids of LiCl(a), NaCl(b), KCl(c), and MgCl₂(d) to the MeOH solution of $1 (1.4 \times 10^{-5} \text{M})$ at 25 °C.

Figure S7. The fluorescence spectra upon addition of KNO₃ to the MeOH solution of $1 (1.1 \times 10^{-5} \text{ M})$ at 25 °C, slit width, 5 nm.