Electronic Supplementary Information

Spontaneous resolution of lanthanide coordination polymers with 2-hydroxypyrimidine-4,6-dicarboxylic acid

Ming-Juan Gao, Ping Yang, Bin Cai, Jing-Wei Dai, Jian-Zhong Wu* and Ying Yu

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China

Figure S1 Electrospray mass spectra for 2-chloro-4,6-dimethylpyrimidine (left, positive ion) and H_3 opdc (right, negative ion). The formula (formula weight) for these two compounds is $C_6H_7ClN_2$ (142.59) and $C_6H_4N_2O_5$ (184.11), respectively.

Figure S2 Circular dichroism spectrum for the as-synthesized bulky product of 2.

Complex	Elemental analysis (%)		\mathbf{D} hand (am^{-1})
	Calculated	Found	
1	C, 17.27; H, 2.48; N,	C, 17.21; H, 2.42; N,	3427s, 2944m, 2359s, 2342w, 1622s, 1558s, 1488w,
	6.71	6.69	1399s, 1373w, 1276s, 1142s, 1101w, 1053m, 949w,
			901w, 799s, 737m, 669m, 590m, 535m, 490w
2	С, 17.06; Н, 2.45;	C, 17.04; H, 2.39; N,	3424s, 2929m, 2359m, 2341w, 1622s, 1558s, 1494m,
	N,6.64	6.60	1400s, 1375w, 1276s, 1143s, 1103w, 1054m, 951w,
			899w, 799s, 737m, 669w, 596m, 537w, 490m
3	C, 16.98; H, 2.44; N,	C, 16.96; H, 2.37; N,	3419w, 2923m, 2359s, 2342m, 1622s, 1558s, 1489w,
	6.60	6.56	1399s, 1373w, 1277s, 1143s, 1103w, 1054w, 951w,
			899w, 799s, 737m, 669m, 596w, 537w, 490w
4	C, 16.84; H, 2.42; N,	С, 16.80; Н, 2.39;	3415s, 2939m, 2362w, 2335w, 1625s, 1560s, 1491m,
	6.55	N,6.49	1402s, 1378w, 1277s, 1143s, 1103w, 1057w, 952w,
			901w, 800s, 741m, 669w, 608m, 540w, 489m
5	C, 16.67; H, 2.39; N,	С, 16.66; Н, 2.37;	3410s, 2924s, 2359w, 2333w, 1626s, 1563s 1497m,
	6.48	N,6.45	1403s, 1379w, 1279s, 1143s, 1103w, 1057m, 955w,
			899w, 800s, 743s, 669w, 609w, 541w, 490m
6	C, 16.44; H, 2.36; N,	C, 16.37; H, 2.32; N,	3397s, 2924m, 2362w, 2335w, 1628s, 1560s, 1498w,
	6.39	6.36	1405s, 1382m, 1279s, 1145s, 1103w, 1057m, 957w,
			899w, 800s, 746s, 669w, 609w, 544w, 492m

Table S1 Elemental analysis and IR spectral data for complexes $[Ln(opdc)(H_2O)_2] \cdot 8/3H_2O$ (Ln = Eu, 1; Gd, 2; Tb, 3; Dy, 4; Er, 5; Yb, 6).