Electronic Supplementary Information (ESI)

Synthesis and properties of five unexpected copper complexes with ring-cleavage of 3,6-di-2-pyridyl-1,2,4,5-tetrazine by one pot *in situ* hydrothermal reaction

Jiehu Cui,^{*a*} Liangfang Huang,^{*a*} Zhenzhong Lu,^{*a*} Yizhi Li,^{*a*} Zijian Guo^{*a*} and Hegen Zheng a,b

^aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China
^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China E-mail: zhenghg@nju.edu.cn. Fax: 86-25-83314502.

Contents

Page

Figures. S1-4. FT-IR spectroscopy of the compounds 1, 2, 3 and 4.	2-3
Figure. S5a. UV absorbance spectra of 1, 2, 3, 4 and DPTZ.	4
Figure. S5b. UV absorbance spectra of DPTZ in acetonitrile /water (1:3) solution a: room temperature. b: 60 ^o C. c: 120 ^o C.	l, 4
Figure. S5c. The diffuse reflect solid-state UV/Vis spectra of 1, 2, 3, 4 and DPT2	Z. 5
Figure. S5d. XPS spectra of compound 3.	5
Figure. S5e. The GC analysis of methanol.	6
Figures. S6-9. Powder X-ray diffraction patterns of compounds 1, 2, 3 and 4.	6-8
Figure S10. The curves of TGA of 1, 2, 3 and 4.	8
Tables S1-4. Selected bond lengths (Å) and angles (deg)for compounds 1, 2, 3 and 4.	9

Figure S1. FT-IR spectroscopy of the compound 1.

Figure S2. FT-IR spectroscopy of the compound 2.

Figure S3. FT-IR spectroscopy of the compound 3.

Figure S4. FT-IR spectroscopy of the compound 4.

Figure S5a. UV absorbance spectra of **1** (in acetonitrile /water (1:3) with 120 0 C), **2** (in acetonitrile /water (3:1) with 120 0 C), **3** (in acetonitrile /water (1:3) with 60 0 C), **4** (in acetonitrile /water (1:3) with 120 0 C), DPTZ in acetonitrile /water (1:3) solution with room temperature.

Figure S5b. UV absorbance spectra of DPTZ in acetonitrile /water (1:3) solution, a: room temperature. b: 60 ^oC. c: 120 ^oC.

Figure S5d. XPS spectra of compound 3.

Figure S5e. The GC analysis of methanol.

Figure S6. Powder x-ray diffraction patterns of compound 1.

Figure S7. Powder x-ray diffraction patterns of compound 2

Figure S8. Powder x-ray diffraction patterns of compound 3

Figure S9. Powder x-ray diffraction patterns of compound 4

Figure S10. The curves of TGA of 1, 2, 3 and 4

Cu1-N2 1.916(3)	Cu1-O10 1.955 (2)	Cu1-O3 1.955(3)	Cu1-N1 1.962(3)
Cu1-O10 2.301(3)	Cu2-N7 1.903(3)	Cu2-O11 1.938(2)	Cu2-O4 1.956(3)
Cu2-N6 1.977(3)	Cu2-O11 2.345(3)	Cu3-O6 1.922(3)	Cu3-N5 1.984(3)
Cu3-O5 1.994(3)	Cu3-N3 2.015(3)	Cu3-O14 2.375(3)	Cu4-O7 1.924(3)
Cu4-N9 1.984(3)	Cu4-N8 2.026(3)	Cu4-O8 2.021(3)	Cu4-O9 2.275(3)
N2-N3 1.404(4)			
O3-Cu1-N1	163.11(12)	N2-Cu1-N1	82.42(12)
N2-Cu1-N1	82.42(12)	N7-Cu2-O4	81.19(12)
N5-Cu3-O5	91.23(12)	O6-Cu3-N3	95.30(12)
N5-Cu3-N3	81.90(12)	O5-Cu3-N3	171.92(12)

Table S1. Selected bond lengths (Å) and angles (deg) for compound 1

Table S2. selected bond lengths (\AA) and angles (deg) for compound 2

Tuble S21 Selected S	ona ionguis (i i) ana a	igies (ueg) for compo-			
O7-Cu1 2.281(3)	Cu1-O6 1.935(2)	Cu1-O5 1.983(2)	Cul-N1 1.989(3)		
Cu1-N2 2.013(3)	Cu1-O7 2.281(3)	Cu2-N3 1.923(3)	Cu2-O4 1.953(3)		
Cu2-O8 1.950(3)	Cu2-N4 1.995(3)	Cu2-O3 2.331(3)			
O5- Cu1- N1	89.52(12)	O6- Cu1- N2	96.95(11)		
O5- Cu1- N2	170.44(11)	N1- Cu1- N2	82.00(12)		
N1- Cu1- O7	101.00(11)	N2- Cu1- O7	95.54(10)		
N3- Cu2- O4	176.78(14)	N3- Cu2- O8	81.27(11)		
O4- Cu2- O8	96.01(13)	N3- Cu2- N4	81.86(11)		
O4- Cu2- N4	100.92(14)	08- Cu2- N4	162.69(11)		
N3- Cu2- O3	95.18(11)	O4- Cu2- N4	100.92(14)		
Table S3. Selected bond lengths (Å) and angles (deg) for compound 3					
Cu1-C7 1.892(3)	Cu1-N3 1.926(3)	Cu1-N1 2.241(3)	Cu1-N2 2.365(3)		
C7-Cu1-N3	147.65(15)	C7-Cu1-N1	106.99(13)		
N3-Cu1-N1	102.35(11)	C7-Cu1-N2	100.20(13)		
N3-Cu1-N2	100.77(12)	N1-Cu1-N2	73.86(10)		

	ε	e (e, 1	
Cu1-O7 1.945(3)	Cu1-O6 1.951(3)	Cu1-N5 1.982(4)	Cu1-N2 1.998(3)
O1-Cu1 2.357(3)	Cu2-O3 1.889(3)	Cu2-N1 1.916(4)	Cu2-N3 2.016(4)
O7-Cu1-O6	90.65(13)	O7-Cu1-N5	161.29(14)
O6- Cu1-N5	91.43(15)	O7-Cu1-N2	93.45(14)
O6-Cu1-N2	169.99(15)	N5-Cu1-N2	81.80(15)
O7-Cu1-O1	96.81(12)	N1-Cu2-N3	81.22(16)
N5-Cu1-O1	101.83(13)	N2- Cu1-O1	97.11(13)
O3-Cu2-N1	177.41(16)	O3-Cu2-N3	98.07(16)