Supporting Information for

Hydrogen bond-organized two-fold interpenetrating homochiral pcu net

Jing-Yun Wu,*^a Sheng-Ming Huang^b Yun-Chieh Huang^b and Kuang-Lieh Lu*^b

^aDepartment of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan. Fax:

+886-49-2917956; Tel: +886-49-2910960-4918; E-mail: jyunwu@ncnu.edu.tw

^bInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan.

Crystal structure determination

Single-crystal X-ray diffraction analysis of 2 was performed by using a Bruker Smart CCD diffractometer equipped with graphite monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). Intensity data were collected at 296(2) K within the limits of $1.37^{\circ} \le \theta \le 25.05^{\circ}$. Starting model for structure refinement was solved by direct methods using SHELXS-97,^{S1} and the structural data were refined by full-matrix least-squares methods on F^2 using the WINGX^{S2} and SHELX-97^{S1} program packages. The molecular structure of 2 was solved in the monoclinic chiral space group $P2_1$. The asymmetric unit consists of two copper atoms, two D-H₂Cam ligands, four 4-ptz ligands, and two coordination water molecules. Anisotropical thermal factors were assigned to most of non-disordered non-hydrogen atoms except those (O4, O4', C26, C27, C32, C24', C26', C31', and C32') showing severe disorder as explained below. Carbon-bound hydrogen atoms were generated geometrically and assigned isotropic thermal parameters. Oxygen-bound hydrogen atoms were structurally evident in difference Fourier maps and refined isotropically in the riding-model approximation with bond length and angles restrains. In 2, the first crystallographically distinct D-H₂Cam ligand (C1–C10) has a non-disordered hydrocarbon skeleton, thus it was well-solved in its absolute structure (D-configuration). One of the carboxylic acid oxygens (O4 and O4') of this non-disordered D-H₂Cam ligand was split over two positions, which were refined isotropically with refined site-occupation factors (SOF) of 0.575 and 0.425. On the other hand, the second crystallographically distinct D-H₂Cam ligand (C23–C32) was disordered over two occupied sites with refined SOF of 0.65 and 0.35, in which several disordered carbon atoms (C26, C27, and C32 in the major-occupied part, and C24', C26', C31', and C32' in the minor-occupied part) were refined isotropically. Although this D-H₂Cam ligand is disordered, its absolute structure of D-configuration was determined very well as indicated by the Flack parameter of 0.02(3).^{S3} When checking the missing symmetry by the ADDSYM subroutine of PLATON,^{S4} an additional (pseudo) symmetry operation of c-glide is detected; this suggests an alternative space group $(P2_1/c)$ assignment. Therefore solving the structure of 2 was further done in the centrosymmetric space group $P2_1/c$. Model in $P2_1/c$ space group contains one copper atom, one H₂Cam ligand, two 4-ptz ligands, and one coordination water molecule in the asymmetric unit. In the model, structure was refined in mixed isotropic/anisotropic approximation: isotropic for the disordered carbon atoms and anisotropic for the rest non-hydrogen atoms. The H₂Cam ligand was disordered over two occupied sites with refined SOF of 0.775 and 0.225. Structure refinement showed that the disorder model for the H₂Cam molecule has had more than disorder of the α -methyl group at the C1 and C3 atoms. Refinement of the occupancies of the α -methyl group at C1/C3 gave values of 0.449/0.326 and 0.122/0.103 in the major- and minor-occupied parts, respectively, of the disordered model with reasonable equivalent isotropic displacement parameters. As a result, the ratio of D-/L-configuration or L-/D-configuration of the H₂Cam ligand is 0.552:0.448 in the final refinement. However, refinement (goodness-of-fit on $F^2 = 1.118$, final $R_1 = 0.0479$ and $wR_2 = 0.0958$ [$I > 2\sigma(I)$], and $R_1 =$ 0.0664 and $wR_2 = 0.1052$ (all data)) does not lead to a more reasonable result significantly over than those (goodness-of-fit on $F^2 = 1.039$, final $R_1 = 0.0456$ and $wR_2 = 0.0932$ [$I > 2\sigma(I)$], and $R_1 = 0.0456$ 0.0739 and $wR_2 = 0.1120$ (all data)) in space group $P2_1$ (Table S1). Further, refinement in the chiral space group $P2_1$ assigns a reasonable absolute structure parameter (the Flack parameter = 0.02(3))

properly, suggesting a well-solved D-configured structure of the H₂Cam ligand, even though the extreme conditions in the hydrothermal synthesis may induce isomerization of D-H₂Cam ligand. Therefore, on the basis of the refinements, solving the structure of **2** in the chiral space group $P2_1$ is preferred over than in the centrosymmetric space group $P2_1/c$, and the absolute configuration of **2** was determined unambiguously due to the use of the enantiopure D-H₂Cam ligand.

¥ ¥ ¥	Non-centrosymmetric model for 2	Pseudo-centrosymmetric model for 2
Empirical formula	$C_{22}H_{26}CuN_{10}O_5$	$C_{22}H_{26}CuN_{10}O_5$
$M_{ m w}$	574.07	574.07
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1$	$P2_{1}/c$
a/Å	15.262(3)	15.262(3)
b/Å	13.046(3)	13.046(3)
$c/\text{\AA}$	13.058(3)	13.058(3)
$\alpha/^{\circ}$	90.00	90.00
β/°	102.54(3)	102.54(3)
$\gamma/^{\circ}$	90.00	90.00
$V/Å^3$	2537.9(9)	2537.9(9)
Ζ	4	4
<i>T</i> /K	296(2)	296(2)
λ/Å	0.71073	0.71073
$D_{calc}/\mathrm{g~cm}^{-3}$	1.502	1.502
μ/mm^{-1}	0.915	0.915
F_{000}	1188	1188
Refl. collected	19536	19057
Unique refl. (R_{int})	8693 (0.0446)	4492 (0.0519)
Obs. refl. $(I > 2\sigma(I))$	6108	3440
Parameters	710	354
Restraints	1	3
GOF	1.039	1.118
$R_1^a (I > 2\sigma(I))$	0.0456	0.479
$wR_2^{b} (I > 2\sigma(I))$	0.0931	0.958
R_1^a (all data)	0.0739	0.664
wR_2^b (all data)	0.1120	0.1052
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}/e \text{ Å}^{-3}$	0.395, -0.451	0.721, -0.468
Flack parameter	0.02(3)	_

Table S1Crystallographic data for 2

^{*a*} $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$. ^{*b*} $wR_2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}$.

References:

- (S1) Sheldrick, G. M. SHELX-97 (including SHELXS and SHELXL); University of Göttingen: Göttingen, Germany, 1997.
- (S2) WINGX: Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.
- (S3) Flack, H. D. Acta Crystallogr., Sect. A: Foundations of Crystallography, 1983, 39, 876.
- (S4) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.

Fig. S1 Energy-dispersive X-ray (EDX) spectrum of 2.

Fig. S2 Powder X-ray diffraction (PXRD) patterns of **2**: (a) a freshly grounded sample at room temperature; (b) simulated from the single-crystal data.

Fig. S3 Thermogravimetric (TG) traces of 1 and 2.