Supporting Information for the manuscript:

N-Donor Ligand Mediated Assembly of Divalent Zinc and Cadmium Coordination Polymers Based on 2,3,2',3'-Thiaphthalic Acid: Syntheses, Structures and Luminescent Properties

Jia-Bin Li,^a Xi-Yan Dong,^{a,b} Li-Hui Cao,^a Shuang-Quan Zang,^{a*} and Thomas. C. W. Mak,^{ac}

^aThe College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

^bDepartment of Physics and Chemistry, Henan Polytechnic University, Zhengzhou

Henan, P. R. China.

^cDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, New

Territories, Hong Kong SAR, P. R. China.

Author for correspondence: Dr. S.-Q. Zang, E-mail: zangsqzg@zzu.edu.cn.

This PDF file includes Table S1–S2 and Figure S1-S8

Table. S1. Hydrogen Bonds parameters in 4 and 5.

Table. S2. Emission and excitation maxima wavelengths of 1–5.

Figure. S1.3D supramolecular network for compound 1.

Figure. S2. In compound **5**, 3D network is formed by the inter-chain C–H^{\cdots} π interactions between 2D layers.

Figure. S3. Representation of the solvent water found in the channels of compound 5.

Figure. S4. Thermogravimetric curve of the complexs.

Figure. S5. X-ray powder diffraction of complex **1.** (a) Simulated from single crystal data. (b) observed for complex **1**. (c) Heated to 100°C at vacuum.

Figure. S6. X-ray powder diffraction of complex **2.** (a) Simulated from single crystal data. (b) observed for complex **2**. (c) Heated to 100°C at vacuum.

Figure. S7. X-ray powder diffraction of complex **3.** (a) Simulated from single crystal data. (b) observed for complex **3**.

Figure. S8. X-ray powder diffraction of complex **4.** (a) Simulated from single crystal data. (b) observed for complex **4**. (c) Heated to 100°C at vacuum.

Figure. S9. X-ray powder diffraction of complex **5.** (a) Simulated from single crystal data. (b) observed for complex **5**. (c) Heated to 100°C at vacuum. (d) rehydrated sample for **5**.

О-Н…О	<i>d</i> (O…H)	<i>d</i> (O…O)	<i>d</i> (H…O)	∠ОНО
Compound 4				
O(W)-H(1WA)···O(7W)#1	0.85	2.920(4)	1.87	166.3
O(2W)−H(2WB)…O(7)#2	0.85	3.035(4)	2.34	138.8
O(2W)−H(2WA)…O(6W)#3	0.85	2.782(4)	1.95	163.4
O(3W)−H(3WA)…O(8)#4	0.75	2.722(4)	1.97	179.2
O(3W)-H(3WB)O(7)	0.86	3.103(4)	2.24	179.5
O(5W)-H(5WA)…O(4)#5	0.85	2.706(3)	1.86	178.8
O(5W)-H(5WB)O(10)#6	0.75	2.743(5)	1.99	178.8
O(6W)-H(6WA)…O(3W)#7	0.85	2.888(4)	2.37	119.6
O(6W)-H(6WB)O(1)	0.85	2.782(2)	1.95	163.9
O(7W)−H(7WA)…O(5)#8	0.86	2.772(3)	1.91	177.9
O(7W)-H(7WB)…O(5W)	0.75	2.810(2)	2.14	148.0
O(10)−H(10A)···O(2)#9	0.82	2.652	1.83	173.5
Compound 5				
O(5W)−H(5WA)···O(8)#1	0.75	2.672(2)	1.992	177.5
O(5W)-H(5WB)O(12W)	0.75	2.646(3)	1.909	167.3
O(6W)-H(6WB)O(13)#2	0.73	2.686(1)	2.205	124.4
O(7W)-H(7WA)···O(15W)#3	0.82	2.708(4)	1.910	164.2
O(7W)-H(7WB)O(16)#4	0.83	2.687(2)	1.901	155.9
O(13W)-H(13WA)O(14)#2	0.85	2.850(3)	2.246	128.05
O(13W)-H(13WB)O(14W)	0.85	2.674(1)	1.900	150.8
O(14W)-H(14WA)O(16)#5	0.85	2.956(2)	2.332	130.6
O(14W)-H(14WB)O(7W)	0.75	2.772(2)	2.324	119.5
O(15W)−H(15WA)…O(5)#6	0.75	2.732(4)	2.005	163.4
O(15W)-H(15WB)····O(13W)#7	0.75	2.783(5)	2.005	163.8

Table S1.Selected hydrogen-bonding geometries for 4 and 5 (in Å, °)

Table S2. Emission and excitation maxima wavelengths (nm)

polymer	HL	1	2	3	4	5	
$\lambda_{em}(nm)$	480	468	481	429	481	450	
$\lambda_{ex}(nm)$	370	369	391	321	371	375	

Figure S1.3D supramolecular network for compound 1.

Figure S2. In compound 5, 3D network is formed by the inter-chain C–H^{\cdots} π interactions between 2D layers.

Figure S3. Representation of the solvent water found in the channels of compound 5.

Figure S4. Thermogravimetric curve of the complexs.

Figure. S5. X-ray powder diffraction of complex **1.** (a) Simulated from single crystal data. (b) observed for complex **1**. (c) Heated to 100°C at vacuum.

Figure. S6. X-ray powder diffraction of complex **2.** (a) Simulated from single crystal data. (b) observed for complex **2**. (c) Heated to 100°C at vacuum.

Figure. S7. X-ray powder diffraction of complex **3.** (a) Simulated from single crystal data. (b) observed for complex **3** at vacuum.

Figure. S8. X-ray powder diffraction of complex **4.** (a) Simulated from single crystal data. (b) observed for complex **4**. (c) Heated to 100°C at vacuum.

Figure. S9. X-ray powder diffraction of complex **5.** (a) Simulated from single crystal data,(b) observed for complex **5**. (c) Heated to 100°C at vacuum. (d) rehydrated sample for **5**.