Electronic Supplementary Information for

Solvothermal syntheses and characterizations of lanthanide(III)/SbS₄³⁻ complexes

associated by dien ligand: A detailed study based on the lanthanide contraction

effect

Weiwei Tang, Ruihong Chen, Jing Zhao, Wenqing Jiang, Yong Zhang and Dingxian Jia *

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

Sb(1)–S(1)	2.325(3)	Sb(1)–S(2)	2.334(3)
Sb(1)–S(3)	2.320(3)	Sb(1)–S(4)	2.317(3)
Pr(1)–S(1)	3.064(3)	Pr(1)–S(2)	3.066(3)
Pr(1)–S(3)#1	3.202(3)		
Pr(1)–N(1)	2.704(8)	Pr(1)–N(2)	2.717(9)
Pr(1)–N(3)	2.704(8)	Pr(1)–N(4)	2.656(8)
Pr(1)–N(5)	2.682(9)	Pr(1)–N(6)	2.718(8)
S(1)–Sb(1)–S(2)	101.72(9)	S(1)–Sb(1)–S(3)	113.60(10)
S(1)–Sb(1)–S(4)	109.82(10)	S(2)–Sb(1)–S(3)	109.67(9)
S(2)–Sb(1)–S(4)	111.47(10)	S(3)–Sb(1)–S(4)	110.32(9)
Sb(1)–S(1)–Pr(1)	90.77(8)	Sb(1)–S(2)–Pr(1)	90.55(8)
Sb(1)–S(3)–Pr(1)#2	118.81(9)		
S(1)–Pr(1)–S(2)	72.24(7)	S(1)–Pr(1)–S(3)#1	137.57(7)
S(2)–Pr(1)–S(3)#1	131.32(7)	S(1)–Pr(1)–N(1)	75.5(2)
S(1)–Pr(1)–N(2)	138.5(2)	S(1)–Pr(1)–N(3)	133.7(2)
S(1)-Pr(1)-N(4)	78.1(2)	S(1)-Pr(1)-N(5)	70.0(2)
S(1)–Pr(1)–N(6)	91.78(19)	S(2)–Pr(1)–N(1)	76.44(19)
S(2)–Pr(1)–N(2)	91.00(19)	S(2)–Pr(1)–N(3)	67.8(2)
S(2)-Pr(1)-N(4)	79.0(2)	S(2)-Pr(1)-N(5)	131.1(2)
S(2)–Pr(1)–N(6)	146.97(18)	S(3)#1–Pr(1)–N(1)	137.3(2)
S(3)#1–Pr(1)–N(2)	81.9(2)	S(3)#1–Pr(1)–N(3)	65.6(2)
S(3)#1–Pr(1)–N(4)	74.5(2)	S(3)#1–Pr(1)–N(5)	69.0(2)
S(3)#1–Pr(1)–N(6)	79.83(18)	N(1)–Pr(1)–N(2)	63.6(3)
N(1)–Pr(1)–N(3)	115.4(3)	N(1)-Pr(1)-N(4)	148.2(3)
N(1)–Pr(1)–N(5)	121.1(3)	N(1)–Pr(1)–N(6)	71.5(3)
N(2)–Pr(1)–N(3)	65.1(3)	N(2)–Pr(1)–N(4)	136.9(3)
N(2)-Pr(1)-N(5)	137.8(3)	N(2)–Pr(1)–N(6)	82.1(3)
N(3)–Pr(1)–N(4)	72.3(3)	N(3)–Pr(1)–N(5)	123.1(3)
N(3)–Pr(1)–N(6)	134.5(3)	N(4)-Pr(1)-N(5)	63.9(3)
N(4) - Pr(1) - N(6)	126.9(3)	N(5)-Pr(1)-N(6)	63.7(2)
Symmetry transformations used to generate equivalent atoms: #1) x+1,			
y, z; #2) x–1, y, z.			

Table S1. Selected bond lengths (Å) and angles (°) for 1a

Sb(1)–S(1)	2.324(2)	Sb(1)–S(2)	2.334(2)
Sb(1)–S(3)	2.320(2)	Sb(1)–S(4)	2.317(2)
Nd(1)–S(1)	3.017(2)	Nd(1)–S(2)	3.025(2)
Nd(1)-S(3)#1	3.203(2)		
Nd(1)–N(1)	2.633(7)	Nd(1)–N(2)	2.662(7)
Nd(1)–N(3)	2.641(7)	Nd(1)–N(4)	2.653(7)
Nd(1)–N(5)	2.625(7)	Nd(1)–N(6)	2.601(7)
S(1)–Sb(1)–S(2)	100.80(8)	S(1)-Sb(1)-S(3)	114.13(8)
S(1)-Sb(1)-S(4)	109.94(8)	S(2)–Sb(1)–S(3)	110.01(8)
S(2)–Sb(1)–S(4)	111.58(8)	S(3)-Sb(1)-S(4)	110.10(8)
Sb(1)-S(1)-Nd(1)	91.06(7)	Sb(1)-S(2)-Nd(1)	90.68(7)
Sb(1)-S(3)-Nd(1)#2	119.59(8)		
S(1)-Nd(1)-S(2)	72.87(6)	S(1)-Nd(1)-S(3)#1	137.42(6)
S(2)-Nd(1)-S(3)#1	131.87(6)	S(1)–Nd(1)–N(1)	134.02(17)
S(1)-Nd(1)-N(2)	139.43(19)	S(1)–Nd(1)–N(3)	75.15(18)
S(1)-Nd(1)-N(4)	92.42(17)	S(1)-Nd(1)-N(5)	70.39(18)
S(1)-Nd(1)-N(6)	77.46(19)	S(2)–Nd(1)–N(1)	68.35(17)
S(2)-Nd(1)-N(2)	91.68(17)	S(2)–Nd(1)–N(3)	76.35(16)
S(2)-Nd(1)-N(4)	147.01(16)	S(2)–Nd(1)–N(5)	131.91(17)
S(2)-Nd(1)-N(6)	78.18(18)	S(3)#1-Nd(1)-N(1)	65.10(17)
S(3)#1-Nd(1)-N(2)	80.59(18)	S(3)#1-Nd(1)-N(3)	136.88(17)
S(3)#1-Nd(1)-N(4)	78.71(16)	S(3)#1-Nd(1)-N(5)	68.25(18)
S(3)#1-Nd(1)-N(6)	76.18(19)	N(1)-Nd(1)-N(2)	66.1(3)
N(1)-Nd(1)-N(3)	117.0(2)	N(1)-Nd(1)-N(4)	133.5(2)
N(1)-Nd(1)-N(5)	121.3(2)	N(1)-Nd(1)-N(6)	71.3(2)
N(2)-Nd(1)-N(3)	64.7(3)	N(2)-Nd(1)-N(4)	80.5(2)
N(2)-Nd(1)-N(5)	136.3(2)	N(2)-Nd(1)-N(6)	137.0(3)
N(3)-Nd(1)-N(4)	71.3(2)	N(3)–Nd(1)–N(5)	121.2(2)
N(3)–Nd(1)–N(6)	146.9(3)	N(4)-Nd(1)-N(5)	64.4(2)
N(4)-Nd(1)-N(6)	128.3(2)	N(5)–Nd(1)–N(6)	64.5(2)
Symmetry transformations used to generate equivalent atoms: #1) x+1,			
y, z; #2) x–1, y, z.			

Table S2. Selected bond lengths (Å) and angles (°) for 1b

$G_{1}(1)$, $G_{1}(1)$	2 224(2)	CL(1) $C(2)$	2,220(2)
SD(1) - S(1)	2.334(2)	SD(1) - S(2)	2.320(2)
Sb(1)-S(3)	2.321(2)	Sb(1)-S(4)	2.319(2)
Sm(1)–S(1)	3.006(2)	Sm(1)–S(2)	2.995(2)
Sm(1)–S(3)#1	3.248(2)		
Sm(1)–N(1)	2.609(8)	Sm(1)–N(2)	2.630(7)
Sm(1)–N(3)	2.616(7)	Sm(1)–N(4)	2.585(7)
Sm(1)–N(5)	2.598(7)	Sm(1)–N(6)	2.623(7)
S(1)–Sb(1)–S(2)	100.70(8)	S(1)–Sb(1)–S(3)	110.29(8)
S(1)-Sb(1)-S(4)	111.50(8)	S(2)–Sb(1)–S(3)	114.32(9)
S(2)–Sb(1)–S(4)	109.75(9)	S(3)-Sb(1)-S(4)	110.00(8)
Sb(1)-S(1)-Sm(1)	90.59(7)	Sb(1)-S(2)-Sm(1)	91.11(7)
Sb(1)–S(3)–Sm(1)#2	119.40(9)		
S(1)-Sm(1)-S(2)	73.33(6)	S(1)–Sm(1)–S(3)#1	131.94(6)
S(2)–Sm(1)–S(3)#1	137.22(6)	S(1)-Sm(1)-N(1)	68.5(2)
S(1)–Sm(1)–N(2)	91.98(17)	S(1)–Sm(1)–N(3)	76.34(17)
S(1)–Sm(1)–N(4)	77.60(17)	S(1)–Sm(1)–N(5)	132.66(17)
S(1)–Sm(1)–N(6)	147.01(16)	S(2)-Sm(1)-N(1)	134.1(2)
S(2)-Sm(1)-N(2)	139.77(19)	S(2)-Sm(1)-N(3)	74.97(18)
S(2)-Sm(1)-N(4)	77.43(19)	S(2)-Sm(1)-N(5)	71.19(18)
S(2)-Sm(1)-N(6)	92.67(17)	S(3)#1–Sm(1)–N(1)	64.8(2)
S(3)#1–Sm(1)–N(2)	80.17(18)	S(3)#1–Sm(1)–N(3)	136.88(17)
S(3)#1–Sm(1)–N(4)	76.75(19)	S(3)#1–Sm(1)–N(5)	67.13(18)
S(3)#1–Sm(1)–N(6)	78.35(16)	N(1)-Sm(1)-N(2)	66.8(3)
N(1)–Sm(1)–N(3)	117.9(3)	N(1)-Sm(1)-N(4)	70.4(3)
N(1)-Sm(1)-N(5)	119.7(3)	N(1)-Sm(1)-N(6)	133.1(3)
N(2)-Sm(1)-N(3)	65.1(3)	N(2)-Sm(1)-N(4)	136.8(3)
N(2)–Sm(1)–N(5)	135.2(2)	N(2)–Sm(1)–N(6)	79.6(2)
N(3)-Sm(1)-N(4)	146.4(2)	N(3)-Sm(1)-N(5)	121.8(2)
N(3)–Sm(1)–N(6)	71.1(2)	N(4)-Sm(1)-N(5)	64.9(2)
N(4)-Sm(1)-N(6)	129.3(2)	N(5)-Sm(1)-N(6)	64.8(2)
Symmetry transformations used to generate equivalent atoms: #1) x-1,			
y, z; #2) x+1, y, z.			

Table S3. Selected bond lengths (Å) and angles (°) for 1c

Sb(1)–S(1)	2.3503(18)	Sb(1)–S(2)	2.3098(18)
Eu(1)-S(1)	2.8415(18)	Eu(1)-N(1)	2.570(5)
Eu(1)–N(2)	2.581(6)	Eu(1)-N(3)	2.605(5)
S(2)-Sb(1)-S(1)	107.69(7)	S(1)-Sb(1)-S(1)#1	104.17(9)
S(2)#1–Sb(1)–S(1)	110.78(7)	S(2)#1–Sb(1)–S(2)	115.19(10)
Sb(1)-S(1)-Eu(1)	87.18(6)	S(1)#1-Eu(1)-S(1)	81.47(7)
N(1)-Eu(1)-S(1)#1	152.95(13)	N(2)-Eu(1)-S(1)#1	138.95(13)
N(1)-Eu(1)-S(1)	90.83(14)	N(2)-Eu(1)-S(1)	83.90(14)
N(3)-Eu(1)-S(1)	80.46(14)	N(3)-Eu(1)-S(1)#1	73.87(13)
N(1)-Eu(1)-N(1)#1	106.7(3)	N(2)-Eu(1)-N(2)#1	129.4(3)
N(1)–Eu(1)–N(2)	64.76(17)	N(2)-Eu(1)-N(3)#1	131.11(19)
N(1)-Eu(1)-N(2)#1	85.17(19)	N(2)–Eu(1)–N(3)	65.96(17)
N(1)-Eu(1)-N(3)#1	72.49(18)	N(1)-Eu(1)-N(3)	130.58(17)
N(3)#1-Eu(1)-N(3)	146.0(3)		
Symmetry transformations used to generate equivalent atoms: #1)			
-x+1,y,-z+1/2.			

Table S4. Selected bond lengths (Å) and angles (°) for 2a

Table S5. Selected bond lengths (Å) and angles (°) for 2b

Sb(1)–S(1)	2.3489(11)	Sb(1)–S(2)	2.3112(12)
Dy(1)–S(1)	2.8132(12)	Dy(1)–N(1)	2.581(3)
Dy(1)–N(2)	2.537(4)	Dy(1)–N(3)	2.533(4)
S(2)#1–Sb(1)–S(2)	114.89(7)	S(1)-Sb(1)-S(1)#1	103.63(6)
S(2)#1–Sb(1)–S(1)	111.01(4)	S(2)-Sb(1)-S(1)	107.87(4)
Sb(1)–S(1)–Dy(1)	87.17(4)	S(1)#1–Dy(1)–S(1)	82.03(5)
N(1)-Dy(1)-S(1)#1	73.80(9)	N(2)–Dy(1)–S(1)#1	139.61(9)
N(1)-Dy(1)-S(1)	79.80(9)	N(2)–Dy(1)–S(1)	84.71(10)
N(3)–Dy(1)–S(1)	91.67(10)	N(3)–Dy(1)–S(1)#1	152.48(9)
N(1)-Dy(1)-N(1)#1	144.82(18)	N(3)-Dy(1)-N(3)#1	105.26(19)
N(2)-Dy(1)-N(2)#1	127.3(2)	N(3)–Dy(1)–N(2)	65.45(12)
N(2)–Dy(1)–N(1)	66.35(12)	N(3)#1-Dy(1)-N(2)	82.94(13)
N(2)#1–Dy(1)–N(1)	132.01(12)	N(3)–Dy(1)–N(1)	131.59(12
N(3)#1–Dy(1)–N(1)	72.72(12)		
Symmetry transformations used to generate equivalent atoms: #1)			
-x+1, y, -z+3/2.			

Fig. S1 IR spectra of complex 1a.

Fig. S2 IR spectra of complex 2a.

Fig. S3 Optical absorption spectra of 1b.

Fig. S4 Optical absorption spectra of 1c.

Fig. S5 Optical absorption spectra of 2b.