Materials and Measurements

All starting materials were purchased from commercial sources and used without further purification. ¹H NMR spectra were recorded on a Varian Mercury VX-300 spectrometer. The IR spectra (in KBr pellets) were recorded on a Shimadzu FT-IR 157 spectrophotometer. ESI-MS measurement was performed on Thermo Finnigan LCQ advantage at room temperature. Thermogravimetric studies were carried out with a NETZSCH STA 449C at a heating rate of 5 K/min under nitrogen. X-ray powder diffractograms were measured (Cu KR) using a D/max-rA model Philips Analytical X-ray diffractometer.

1. Synthesis

CB[6] was prepared according to the literature.[1]

1,1'-(hexane-1,6-diyl)dipyridinium-4-carboxylate(HBPC): A solution of 20mmol of 1,6-dibromohexane dissolved in 20ml of acetonitrile was added dropwise, over a period of 1h, to a refluxing solution of 50mmol of the isonicotinate in 25ml of acetonitrile. After gentle refluxing for 3-4h, acetonitrile was removed in vacuo yielding a dark yellow solid, which was the product **1**(1,1'-(hexane-1,6-diyl)bis(4-ethoxycarbonylpyridinium bromide). Product **1** washed with acetone and dried under vacuum with yield of 85%[2]. The solution of product **1**(10mmol) was dissolved in 15% HCl (10ml) and refluxed for 5 h, then the solvent was removed in vacuum. The residue was solved in minimum amount of water and treated with 1, 2-epoxypropane until pH=7. After the solvent was removed under vacuum, the colorless product BPHC was obtained from recrystallization of the residue in $H_2O/EtOH$ and dried under vacuum with yield of 68%[3].

Pseudorotaxane: A mixture of CB[6] (1.20 g, 1.20 mmol) and 1,1'-(hexane-1,6-diyl)dipyridinium-4-carboxylate (0.328 g, 1.0 mmol) in water (30 ml) was heated at 80 $^{\circ}$ C for 8 h. After stirring at room temperature over night, the residue of CB[6] was filtered off. The mixture heated at 120 $^{\circ}$ C in the reactor for 2 days, then slowly cooled to the room temperature and produced X-ray quality yellow crystals of pseudorotaxane with yield of 83%.

2. Characterization

CB[6]: ¹H NMR (300 MHz, 0.2 mol/L NaCl /D₂O) δ 4.269 (Hb, d, 12H, *J* =14.7 Hz), 5.560 (Hc, s, 12H), 5.624 (Ha, d, 12H, *J*=16.2 Hz); IR: (KBr) υ/cm⁻¹ 1734 (C=O stretching frequency of CB[6], characteristic peak of CB $[6]$), 3003, 2937 (C-H stretching frequency of bridged CH₂); ESI-MS: $m/z = 998.1$ [CB[6]+ H]⁺.

Figure1. The structure of CB[6].

Product 1: ¹H NMR (300 MHz, D₂O) *δ* 1.258-1. (H1 and H7, m, 10H), 1.891 (H2, m, 4H), 4.318 $(H6, q, 4H J₁=7.2 Hz, J₂=7.5 Hz, J₃=6.3 Hz$, 4.503 (H3, t, 4H $J₁=7.5 Hz, J₂=7.2 Hz$), 8.359 (H5, s, 4H *J*=5.7 Hz), 8.874 (H4, s, 4H *J*=6.6 Hz); IR: (KBr) υ/cm-1 3118, 3051, 3113 (=C-H of pyridine), 2936 (CH² of alkyl chain), 1724 (carboxylate, C=O), 1636 (C=N), 1573, 1458, 1369(skeleton stretching frequency of pyridine), 1295 (C-O-C), 1114 (C-N⁺); ESI-MS: m/z=497.2 $[C_{22}H_{30}N_2O_4Br^+ + MeOH].$

Figure 2. The structure of product **1**

HBPC: ¹H NMR (300 MHz, DMSO-*d* 6) *δ* 1.275 (H1, m, 4H), 1.893 (H2, m, 4H), 4.518 (H3, t, 4H *J*1=7.5 Hz, *J*2=7.2 Hz), 4.862 (H4, d, 4H *J*=6.6 Hz) 8.176 (H5, s, 4H *J*=6.6 Hz); IR: (KBr) υ/cm-1 3042 (=C-H of pyridine), 2931, 2962 (CH² of alkyl chain), 1644 (C=N, C=O, broad peak), 1513, 1450, 1395, 1346, 1254 (skeleton stretching frequency of pyridine), 1460 ([O-C-O]), 1159(C-N⁺); ESI-MS: $m/z = 329.0$ $[Mr+H]$ ⁺.

Figure 3. The structure of BPHC

Pseudorotaxane: ¹H NMR (300 MHz, 0.2 mol/L NaCl/D2O) *δ* 0.440(H1, m, 4H), 1.065 (H2, m, 4H), 4.381 (H3, t, 4H, *J*1=9.3 Hz, *J*2=7.5 Hz), 9.428 (H4, s, 4H, *J*=6.6Hz), 8.215 (H5, s, 4H, *J*=6.6Hz), 4.184 (Hb, d, 12H, *J*=15.6Hz), 5.397 (Hc, s, 12H), 5.662 (Ha, d, 12H, *J*=16.2Hz); IR (KBr) v/cm^{-1} :3459 (the O-H stretching frequency of water cluster), 1739 (C=O of CB[6]), 1620 (C=N stretching frequency of pyridine), 1470 ([O-C-O]), 1423, 1374, 1326, 1235 (skeleton stretching frequency of pyridine), $1189(C-N^+)$; ESI-MS: m/z=663.7 [Mr+2H]²⁺/2.

Figure 4. ¹H NMR spectra in 0.2 mol/L NaCl/D₂O. a: the host molecular CB[6]. b: the guest molecule HBPC. c: the pseudorotaxane.

IR of pseudorotaxane:

Figure 5. IR of pseudorotaxane.

The TGA curve of Pseudorotaxane:

Figure 6. The TGA curve of pseudorotaxane in N_2 atmosphere.

Figure 7. The TGA curve of rehydrated pseudorotaxane in N_2 atmosphere.

The TGA curve of the dehydrated sample placed in a humidity container for 3 days show that the mass loss is similar to the pseudorotaxane. A mass loss is observed at 60 to 130° C corresponding to the loss of twelve water molecules (14.0% calcd, 13.9% obsd). Heating from 130° C to 390 $^{\circ}$ C, the platform implies the high stability of the host of pseudorotaxane. Heating

beyond 370° C, a more gradual mass loss occurs to 500° C corresponding to the loss of pseudorotaxane.

X-Ray Crystallography

The crystal structure of pseudorotaxane formed by CB[6] and BPHB was determined using a Bruker SMART APEX II CCD diffractometer with Mo KR radiation (*λ*) 0.71073 Å) at 200(2) K in the range of $2.44^{\circ} < \theta < 27.58^{\circ}$. The structure was solved by direct method (SHELXL-97) and refined against *F2* in anisotropic approximation (SHELXL-97). More details of the crystal data are shown in Table 1.

Table 1. The crystal data of psesudorotaxane.

Final R indices $[1>2$ sigma $(I)]$	$R_1 = 0.0635$, $wR_2 = 0.1831$
R indices (all data)	$R_1 = 0.0789$, $wR_2 = 0.1949$
Largest diff. peak and hole	0.630 and -0.965 e.Å ⁻³

Table 2. Hydrogen bonds of intamolecualr for pseudorotaxane $[\hat{A}$ and $\hat{O}]$ ^a

^aSymmetry transformations used to generate equivalent atoms: #1 $1/2$ -x, $3/2$ -y, 2 -z

$D-HA$	d (D-H)	d(HA)	d (DA)	\langle (DHA)
$O9 - H9B$ $O10$	0.8200	2.1700	2.844(15)	139.00
$O9 - H9B$. $O12$	0.8200	2.5700	3.204(7)	135.00
$O10 - H10A$. $O6$	0.8200	1.9800	2.775(14)	162.00
$O10 - H10B$ $O11#6$	0.8200	2.0400	2.443(16)	109.00
$O11 - H11C \ldots O7$	0.8200	2.0200	2.797(6)	158.00
$O11 - H11DO13$	0.8200	2.0630	2.841(7)	158.00
$O12 - H12C \ldots O10$	0.8200	2.1600	2.644(17)	118.00
$O12-H12CO13$	0.8200	2.1800	2.929(6)	152.00
$O12-H12DO1#1$	0.8200	2.1600	2.974(5)	170.00
$O13-H13BO11#6$	0.8200	2.5400	2.843(11)	104.00

^aSymmetry transformations used to generate equivalent atoms: #1 1/2-x,3/2-y,2-z, #6 x,1+y,z Table 4. Hydrogen bonds of $(H_2O)_2$ water clusters and C (1)-H (1)...O (9W), C (5)-H (5A)...O (7 acetate), C (6)-H (6B)...O (10W), C (7)-H (7)...O (11W), C (11)-H (11A)...O (14W), C (17)-H $(17A)...O (12W)$, C (17) -H $(17B)...O (14W)$ [Å and $^{\circ}$]^a.

^aSymmetry transformations used to generate equivalent atoms: #1 1/2-x,3/2-y,2-z, #6 x,1+y,z, #8 x,1-y,1/2+z,

__

#9 -x,y,3/2-z, #10 -x,1+y,3/2-z, #11 1/2-x,1/2+y,3/2-z.

Reference

1. (a) J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi and K. Kim, *J. Am. Chem. Soc.*, 2000, **122**, 540-541. (b) A. I. Day, A. P. Arnold, R. J. Blanch and B. Snushall, *J. Org. Chem.*, 2001, **66**, 8094-8100. (c) F. J. Huo, C. X. Yin and P. Yang, *J. Incl. Phenom. Macrocycl. Chem.* 2006, **56**, 193-196. (d) Y. W. Yang, Y. Chen and Y. Liu, *Inorg. Chem.* 2006, **45**, 3014-3022.

2. F. H. Huang, C. Slebodnick, E. J. Mahan and H. W. Gibson, *Tetrahedron*, 2007, **63**, 2875-2881.

3. Y. Z. Zhao, S. L. Li, L. H. Weng, M. J. Zhang and Y. F. Xiao, *Chin. J. Inorg. Chem.* 2001, **17**, 691-698.