Materials and Measurements

All starting materials were purchased from commercial sources and used without further purification. ¹H NMR spectra were recorded on a Varian Mercury VX-300 spectrometer. The IR spectra (in KBr pellets) were recorded on a Shimadzu FT-IR 157 spectrophotometer. ESI-MS measurement was performed on Thermo Finnigan LCQ advantage at room temperature. Thermogravimetric studies were carried out with a NETZSCH STA 449C at a heating rate of 5 K/min under nitrogen. X-ray powder diffractograms were measured (Cu KR) using a D/max-rA model Philips Analytical X-ray diffractometer.

1. Synthesis

CB[6] was prepared according to the literature.[1]

1,1'-(hexane-1,6-diyl)dipyridinium-4-carboxylate(HBPC): A solution of 20mmol of 1,6-dibromohexane dissolved in 20ml of acetonitrile was added dropwise, over a period of 1h, to a refluxing solution of 50mmol of the isonicotinate in 25ml of acetonitrile. After gentle refluxing for 3-4h, acetonitrile was removed in vacuo yielding a dark yellow solid, which was the product 1(1,1'-(hexane-1,6-diyl))bis(4-ethoxycarbonylpyridinium bromide). Product 1 washed with acetone and dried under vacuum with yield of 85%[2]. The solution of product 1(10mmol) was dissolved in 15% HCl (10ml) and refluxed for 5 h, then the solvent was removed in vacuum. The residue was solved in minimum amount of water and treated with 1, 2-epoxypropane until pH=7. After the solvent was removed under vacuum, the colorless product BPHC was obtained from recrystallization of the residue in H₂O/EtOH and dried under vacuum with yield of 68%[3].

Pseudorotaxane: A mixture of CB[6] (1.20 g, 1.20 mmol) and 1,1'-(hexane-1,6-diyl)dipyridinium-4-carboxylate (0.328 g, 1.0 mmol) in water (30 ml) was heated at 80 °C for 8 h. After stirring at room temperature over night, the residue of CB[6] was filtered off. The mixture heated at $120 \,^{\circ}$ C in the reactor for 2 days, then slowly cooled to the room temperature and produced X-ray quality yellow crystals of pseudorotaxane with yield of 83%.

2. Characterization

CB[6]: ¹H NMR (300 MHz, 0.2 mol/L NaCl /D₂O) δ 4.269 (Hb, d, 12H, *J* =14.7 Hz), 5.560 (Hc, s, 12H), 5.624 (Ha, d, 12H, *J*=16.2 Hz); IR: (KBr) v/cm⁻¹ 1734 (C=O stretching frequency of CB[6], characteristic peak of CB[6]), 3003, 2937 (C-H stretching frequency of bridged CH₂); ESI-MS: m/z = 998.1 [CB[6]+H]⁺.

Figure 1. The structure of CB[6].

Product 1: ¹H NMR (300 MHz, D₂O) δ 1.258-1. (H1 and H7, m, 10H), 1.891 (H2, m, 4H), 4.318 (H6, q, 4H *J*₁=7.2 Hz, *J*₂=7.5 Hz, *J*₃=6.3 Hz), 4.503 (H3, t, 4H *J*₁=7.5 Hz, *J*₂=7.2 Hz), 8.359 (H5, s, 4H *J*=5.7 Hz), 8.874 (H4, s, 4H *J*=6.6 Hz); IR: (KBr) v/cm⁻¹ 3118, 3051, 3113 (=C-H of pyridine), 2936 (CH₂ of alkyl chain), 1724 (carboxylate, C=O), 1636 (C=N), 1573, 1458, 1369(skeleton stretching frequency of pyridine), 1295 (C-O-C), 1114 (C-N⁺); ESI-MS: m/z=497.2 [C₂₂H₃₀N₂O₄Br⁺+MeOH].

Figure 2. The structure of product 1

HBPC: ¹H NMR (300 MHz, DMSO- d^6) δ 1.275 (H1, m, 4H), 1.893 (H2, m, 4H), 4.518 (H3, t, 4H J_1 =7.5 Hz, J_2 =7.2 Hz), 4.862 (H4, d, 4H J=6.6 Hz) 8.176 (H5, s, 4H J=6.6 Hz); IR: (KBr) v/cm⁻¹ 3042 (=C-H of pyridine), 2931, 2962 (CH₂ of alkyl chain), 1644 (C=N, C=O, broad peak), 1513, 1450, 1395, 1346, 1254 (skeleton stretching frequency of pyridine), 1460 ([O-C-O]⁻), 1159(C-N⁺); ESI-MS: m/z=329.0 [Mr+H]⁺.

Figure 3. The structure of BPHC

Pseudorotaxane: ¹H NMR (300 MHz, 0.2 mol/L NaCl/D₂O) δ 0.440(H1, m, 4H), 1.065 (H2, m, 4H), 4.381 (H3, t, 4H, J_1 =9.3 Hz, J_2 =7.5 Hz), 9.428 (H4, s, 4H, J=6.6Hz), 8.215 (H5, s, 4H, J=6.6Hz), 4.184 (Hb, d, 12H, J=15.6Hz), 5.397 (Hc, s, 12H), 5.662 (Ha, d, 12H, J=16.2Hz); IR (KBr) v/cm⁻¹:3459 (the O-H stretching frequency of water cluster), 1739 (C=O of CB[6]), 1620 (C=N stretching frequency of pyridine), 1470 ([O-C-O]⁻), 1423, 1374, 1326, 1235 (skeleton stretching frequency of pyridine), 1189(C-N⁺); ESI-MS: m/z=663.7 [Mr+2H]²⁺/2.

Figure 4. ¹H NMR spectra in 0.2 mol/L NaCl/D₂O. a: the host molecular CB[6]. b: the guest molecule HBPC. c: the pseudorotaxane.

IR of pseudorotaxane:

Figure 5. IR of pseudorotaxane.

The TGA curve of Pseudorotaxane:

Figure 6. The TGA curve of pseudorotaxane in N₂ atmosphere.

Figure 7. The TGA curve of rehydrated pseudorotaxane in N₂ atmosphere.

The TGA curve of the dehydrated sample placed in a humidity container for 3 days show that the mass loss is similar to the pseudorotaxane. A mass loss is observed at 60 to 130°C corresponding to the loss of twelve water molecules (14.0% calcd, 13.9% obsd). Heating from 130°C to 390°C, the platform implies the high stability of the host of pseudorotaxane. Heating beyond 370°C, a more gradual mass loss occurs to 500 °C corresponding to the loss of

X-Ray Crystallography

The crystal structure of pseudorotaxane formed by CB[6] and BPHB was determined using a Bruker SMART APEX II CCD diffractometer with Mo KR radiation (λ) 0.71073 Å) at 200(2) K in the range of 2.44° < θ < 27.58°. The structure was solved by direct method (SHELXL-97) and refined against *F2* in anisotropic approximation (SHELXL-97). More details of the crystal data are shown in Table 1.

Table 1. The crystal data of psesudorotaxane.

Empirical formula	$C_{36}H_{36}N_{24}O_{12} + C_{18}H_{20}N_2O_4 + 12H_2O$
Formula weight	1541.44
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$a = 30.4423(12) \text{ Å} \alpha = 90^{\circ}.$
	$b = 12.3940(4)$ Å $\beta = 128.822(1)^{\circ}$.
	$c = 21.4045(8) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	6292.0(4)Å ³
Ζ	4
Density (calculated)	1.627 Mg/m ³
Absorption coefficient	0.333 mm ⁻¹
F(000)	3240
Crystal size	0.16 x 0.10 x 0.10 mm ³
Theta range for data collection	2.44 to 27.58°.
Index ranges	-32<=h<=36, -14<=k<=14, -25<=l<=25
Reflections collected	22274
Independent reflections	5515 [R(int) = 0.0550]
Completeness to theta = 27.00°	99.7 %
Absorption correction	Multi-scan
Max. and min. transmission	0.9868 and 0.9790
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5515 / 0 / 487
Goodness-of-fit on F^2	1.042

Final <i>R</i> indices [I>2sigma(I)]	$R_1 = 0.0635, wR_2 = 0.1831$
<i>R</i> indices (all data)	$R_1 = 0.0789, wR_2 = 0.1949$
Largest diff. peak and hole	0.630 and -0.965 e.Å ⁻³

Table 2. Hydrogen bonds of intamolecualr for pseudorotaxane [Å and $^{\circ}$] ^a

D-HA	d(D-H)d(H	IA)	d(DA)	<(DHA)
С21Н21О4	0.9500	2.2200	3.127(3)	160.00
C22H22O3#1	0.9500	2.1600	3.082(4)	162.00
C24H24AO6	0.9900	2.4300	3.297(3)	146.00
C24H24BO1#1	0.9900	2.4600	3.362(5)	151.00

^aSymmetry transformations used to generate equivalent atoms: #1 1/2-x,3/2-y,2-z

Table 3.	Hvdrogen	bonds of	(COO^{-})	$(H_2O)_{10}$	anion	water clusters	ſÅ	and °	1 ^a .
14010 0		00110001	(222	12(20110			1		

D-HA	d (D-H)	d (HA)	d (DA)	< (DHA)
	0.0200	0.1700	2.044/15	120.00
09H9B010	0.8200	2.1700	2.844(15)	139.00
О9Н9ВО12	0.8200	2.5700	3.204(7)	135.00
O10H10AO6	0.8200	1.9800	2.775(14)	162.00
O10H10BO11#6	0.8200	2.0400	2.443(16)	109.00
011H11C07	0.8200	2.0200	2.797(6)	158.00
011H11D013	0.8200	2.0630	2.841(7)	158.00
O12H12CO10	0.8200	2.1600	2.644(17)	118.00
O12H12CO13	0.8200	2.1800	2.929(6)	152.00
O12H12DO1#1	0.8200	2.1600	2.974(5)	170.00
O13H13BO11#6	0.8200	2.5400	2.843(11)	104.00

^aSymmetry transformations used to generate equivalent atoms: #1 1/2-x,3/2-y,2-z, #6 x,1+y,z Table 4. Hydrogen bonds of (H₂O)₂ water clusters and C (1)-H (1)...O (9W), C (5)-H (5A)...O (7 acetate), C (6)-H (6B)...O (10W), C (7)-H (7)...O (11W), C (11)-H (11A)...O (14W), C (17)-H (17A)...O (12W), C (17)-H (17B)...O (14W) [Å and °] ^a.

D-HA	d (D-H)	d (HA)	d (DA)	< (DHA)	
O(14 W)H(14AW)O2	0.8200	2.5100	3.011(3)	121.00	
O(14W)H(14BW)O(14W)	0.8200	2.6320	3.056(7)	113.00	
C (1)-H (1)O (9W) #8	1.0000	2.5500	3.306(6)	132.00	
C (5)-H (5A)O (7 acetate) #8	0.9900	2.5200	3.149(5)	122.00	
C (6)-H (6B)O (10W) #9	0.9900	2.3900	3.355(16)	165.00	
C (7)-H (7)O (11W) #10	1.0000	2.3300	3.304(11)	164.00	

C (11)-H (11A)O (14W) #6	0.9900	2.4400	3.395(4)	162.00
C (17)-H (17A)O (12W) #11	0.9900	2.3200	3.270(6)	161.00
C (17)-H (17B)O (14W) #1	0.9900	2.5800	3.548(4)	164.00

^aSymmetry transformations used to generate equivalent atoms: #1 1/2-x,3/2-y,2-z, #6 x,1+y,z, #8 x,1-y,1/2+z,

#9 -x,y,3/2-z, #10 -x,1+y,3/2-z, #11 1/2-x,1/2+y,3/2-z.

Reference

1. (a) J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto, K. Yamaguchi and K. Kim, *J. Am. Chem. Soc.*, 2000, **122**, 540-541. (b) A. I. Day, A. P. Arnold, R. J. Blanch and B. Snushall, *J. Org. Chem.*, 2001, **66**, 8094-8100. (c) F. J. Huo, C. X. Yin and P. Yang, *J. Incl. Phenom. Macrocycl. Chem.* 2006, **56**, 193-196. (d) Y. W. Yang, Y. Chen and Y. Liu, *Inorg. Chem.* 2006, **45**, 3014-3022.

2. F. H. Huang, C. Slebodnick, E. J. Mahan and H. W. Gibson, *Tetrahedron*, 2007, 63, 2875-2881.

3. Y. Z. Zhao, S. L. Li, L. H. Weng, M. J. Zhang and Y. F. Xiao, *Chin. J. Inorg. Chem.* 2001, **17**, 691-698.