pH-induced solvothermal synthesis and characterization of two novel thioarsenate compounds: three-dimensional $(1,2-pdaH_2)_{0.5}As_5S_8$ containing ψ -As(III)S₄ and two-dimensional $(NH_4)_2As_8S_{13}$

Ke-Zhao Du^{*a,b*}, Mei-Ling Feng^{*a*}, Jian-Rong Li^{*a*} and Xiao-Ying Huang^{*a*,*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R.

^b Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China Fax: +86 591 83793727; Tel: +86 591 83793727; E-mail: xyhuang@fjirsm.ac.cn

1. Synthesis

The optimal reaction for **1** is described as follows. A mixture of As_4S_4 powder (0.107g, 0.25 mmol), S powder (0.096 g, 3 mmol), NH₄Cl powder (0.080 g, 1.5 mmol), 0.2 mL 1,2-pda and 6 mL CH₃OH was sealed in a stainless steel reactor with a 28 mL Teflon liner and kept at 150 °C for 6 days, and then cooled to room temperature. Brown octahedral crystals of **1** along with yellow powder were obtained by filtration and washed with ethanol and air-dried. The crystals were selected by hand (stable in the air) in 37% yield (0.245 g) based on As_4S_4 . Anal. Calcd. for **1**: C 2.69%, H 0.90%, N 2.09%; found: C 2.68%, H 0.62%, N 2.16%.

The optimal reaction for synthesizing **2** was similar to that for **1**. The only difference is that the NH₄Cl for **1** was replaced by the $(NH_4)_2C_2O_4$ for **2**. Black sheet-like crystals of **2** along with yellow powder were obtained by filtration and washed with ethanol and air-dried. The crystals were selected by hand (stable in the air) in 21% yield (0.224 g) based on As₄S₄. Anal. Calcd. for **2**: C 0, H 0.77%, N 2.66%; found: C <0.3%, H 0.77%, N 2.66%.

2. More structural details

The intensity data were collected on a Rigaku Saturn 724 CCD diffractometer with graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å) at 123 K. An empirical absorption correction was applied using the multiscan method. The structure was solved by direct methods and refined by full-matrix least-squares cycles in SHELX-97.¹ The 1,2-pdaH₂ cation in **1** is highly disordered over symmetrically related positions therefore the site occupancies of the N, C, and H

atoms were set to be 0.25, corresponding to quarter of a 1,2-pdaH₂ cation per asymmetry unit. The empirical formulae for **1** and **2** were confirmed by thermogravimetric analyses and elemental analyses. Selected hydrogen-bonding data of **1** and **2** are listed in Tables S1 and S2, respectively..

Table S1. Selected hydrogen bond data for compound 1.

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
D-HA	<i>d</i> (D-H) (A)	d (HA) (A)	d (D A) (A)	D-HA (°)
N(1)-H(1A)S(4)	0.90	2.44	3.19(3)	141.2
N(1)-H(1A)S(2)#3	0.90	2.86	3.57(2)	136.5
N(1)-H(1B)S(1)#3	0.90	2.38	3.11(2)	138.2
N(2)-H(2A)S(1)#10	0.90	2.49	3.341(9)	158.2
N(2)-H(2B)S(4)#8	0.90	2.71	3.320(2)	126.5
N(2)-H(2C)S(4)#7	0.90	2.57	3.320(2)	140.7

Symmetry transformations used to generate equivalent atoms: #1 x+1/4,y+1/4,-z+1; #2 -x+1/4,-y+5/4,z; #3 x-1/4,-y+1,z-1/4; #4 -x+1/2,y+1/4,z-1/4; #5 x+1/4,-y+1,z+1/4; #6 x-1/4,y-1/4,-z+1; #7 -x+3/4,-y+3/4,z; #8 -x+3/4,y,-z+3/4; #9 x,-y+3/4,-z+3/4; #10 -x+1,y-1/4,z-1/4. **Table S2.** Selected hydrogen bond data for compound **2**.

D-HA	d (D-H) (Å)	d (HA) (Å)	d (D A) (Å)	D-HA (°)		
N(1)-H(1)S(13)	0.89	2.46	3.300(7)	157.9		
N(1)-H(2)S(2)#5	0.89	2.79	3.675(7)	171.2		
N(1)-H(3)S(9)#6	0.89	2.96	3.678(6)	138.9		
N(1)-H(4)S(6)#5	0.89	2.86	3.394(6)	119.7		
N(1)-H(4)S(11)#7	0.89	2.93	3.742(6)	153.0		
N(1)-H(4)S(4)#5	0.89	3.01	3.573(7)	123.3		
N(2)-H(5)S(6)#4	0.89	2.64	3.391(7)	143.4		
N(2)-H(5)S(7)#6	0.89	2.93	3.545(8)	127.3		
N(2)-H(6)S(8)#8	0.89	2.96	3.518(7)	122.1		
N(2)-H(7)S(8)	0.89	2.60	3.449(7)	160.3		
N(2)-H(8)S(3)	0.89	2.65	3.534(8)	171.9		

Symmetry transformations used to generate equivalent atoms: #1 *x*,-*y*,*z*+1/2; #2 *x*,*y*+1,*z*; #3 *x*,*y*-1,*z*; #4 *x*,-*y*,*z*-1/2; #5 *x*-1/2,*y*+1/2,-*z*+1/2; #6 -*x*+1,*y*,-*z*+1/2; #7 -*x*+1,-*y*+1,-*z*; #8 -*x*+3/2,*y*-1/2,*z*.

Fig. S1 A fragment of 1 showing the H-bonds between the cation and anionic 3D framework.

Fig. S2 A fragment of 2 showing the H-bonding between the cations and anionic layers.

3. Physical measurements

All chemicals were used as purchased without further purification. Element analyses of C, H and N were performed on a German Elementar Vario EL III instrument. The infrared spectrum was taken on a Magna 750 FTIR spectrometer with sample as KBr pellet in the range of 4000-400 cm⁻¹. Powder X-ray diffraction (PXRD) patterns were recorded on a Miniflex II diffractometer at 30 kV and 15 mA using Cu*K* α (1.54178 Å), with a scan speed of 1°/min at room temperature. The simulated PXRD pattern from single crystal data was produced using the PowderCell program. Simultaneous thermoanalysis (TG–DSC) was carried out with a NETZSCH STA449C unit, at a heating rate of 5 °C/min under a nitrogen atmosphere. Optical diffuse reflectance spectrum was measured at room temperature with a Perkin-Elmer Lambda 900 UV/Vis spectrophotometer by using BaSO₄ powder as 100% reflectance and the room-temperature optical absorption spectrum of the title compound was obtained from diffuse reflectance experiment.²

Figure S3 The PXRD patterns (red) are in good agreement with the simulated PXRD patterns (blue) for compounds 1 (a) and 2 (b).

Figure S4 DSC-TG curves for compounds 1 (a) and 2 (b).

Figure S5 IR spectra of compounds 1 (a) and 2 (b).

References

1. Sheldrick, G. M., SHELXS97 and SHELXL97. University of Göttingen: Germany, 1997.

2. (a) Li, J.; Chen, Z.; Wang, X.-X.; Proserpio, D. M. J. Alloy. Compd. 1997, 262, 28-33; (b) Wendlandt,

W. W.; Hecht, H. G., Reflectance spectroscopy. Interscience Publishers: New York, 1966.