Electronic Supporting Information

An Unprecedented Triple Helix: Based on A Tetrameric Assembly of Macrocycle driven by weak C–H··· π and C–H···O Interaction[†]

Tao Pang, ^a Jie Shang, ^b Qin-Wan Yang, ^a Yu Sun, ^a An-Xin Wu, *^a and Hua Jiang*^b

^a Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China Fax: +86 027 67867773; Tel: +86 027 67867773; E-mail: <u>chwuax@mail.ccnu.edu.cn</u>

^b Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Photochemistry Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 (China). *E-mail: hjiang@iccas.ac.cn.*

Table of Contents	Pages	
Experimental procedure for 1	S2	
References	S2	
¹ H and ¹³ C NMR spectra for 1	S3	
HRMS of the products 1	S4	
Expanded view of Figure1-4	S5	
¹ H NMR Binding Experiments with 1		

General experimental procedure for compound 1:.¹ Preparation of products: 1.0 mmol of terminal diyne, 1.0 mmol of secondary diamine and 2.0 mmol of formaldehyde in the presence of 1.0 mmol CuCl in 30 mL of dioxane were heated at 90°C. After workup (monitored by TLC), the solvent was removed under reduced pressure. The solid residue was purified by flash chromatography (SiO₂, CHCl₃/CH₃OH) to give the products 1 (46%) as a white solid. IR (KBr, cm⁻¹): 3422, 2944, 2901, 2808, 1625, 1512, 1453, 1203, 1103, 770 cm⁻¹. ¹H NMR (600 MHz, CDCl₃): 7.67(d, J =8.4, 2H), 7.46(d, J =2.4, 2H), 7.02(q, J =2.4, 2H), 4.86(s, 4H), 3.25(s, 4H), 2.50(s, 8H) ¹³C NMR (150 MHz, CDCl₃): 156.0, 135.3, 129.1, 125.0, 117.6, 107.8, 84.3, 80.7, 56.1, 51.4, 46.7. HRMS (ESI): m/z [M + H]⁺calcd for C22H22N2O2: 346.17; found:347.1744.

1 A. H. Sharba and K. Charry, *Abhath Al-Yarmouk, Basic Sciences and Engineering*, **2002**, *11*(2A), 655.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

Figure S1. Expanded view of Figure 1b. The zigzag motif observed in the x-ray structure of **1**. Color code: C, gray; H, white; N, blue; O, red; C–H··· π interactions, red striped.

Figure S2. Expanded view of Figure 2b.

Figure S3. Expanded view of Figure 3. (a) Space filling model of the packing of $(1)_4$ in the crystal of form II. Stacking of $(1)_4$ viewed down the c-axis. (b) Stacking of $(1)_4$ viewed down the a-axis.

Figure S4. Expanded view of Figure 4a. Details of the C-H $\cdots\pi$ interactions in the windmill-shaped structural unit of 1 in form II viewed down the c-axis.

Figure S5. Expanded view of Figure 4c. Perspective and space-filling views of the 1D helical structure in form II.

Figure S6. Expanded view of Figure 4c. Views of the triple helical 1D braid; each strand of the triple helix is colour coded in yellow, red, and blue.

Figure S7. Views of the triple helical 1D braid constructed of single helix through strong hydrogen-bonding interactions.

Figure S8. Views of the triple helical 1D braid constructed of single helix through complementary C–H··· π interactions.

¹H NMR Binding Experiments with 1

Figure S9. ¹H NMR spectra changes of 1 (600 MHz, CDCl₃, 298 K) by variable concentration.

Figure S10. Partial ¹H NMR spectra changes of 1 (600MHz, CDCl₃, 298K) in variable concentration.

Figure S11. ¹H NMR spectra changes of (600MHz , CDCl₃, 298K) in variable temperature. [1] = 2mM.

Figure S12. Partial ¹H NMR spectra changes of (600MHz, CDCl₃, 298 K) in variable temperature. [1] = 2mM.

Figure S13. Partial ¹H NMR spectra (600MHz, CDCl₃, 298 K) in variable temperature.

[1] = 2mM.

Figure S14. ¹H NMR spectra (600MHz, CDCl₃, 298 K) in variable temperature. [1] = 70mM.

Figure S15. Partial ¹H NMR spectra (600MHz, CDCl₃, 298 K) in variable temperature. [1] = 70mM.

Figure S16. Partial ¹H NMR spectra (600MHz, CDCl₃, 298 K) in variable temperature. [1] = 70mM.

Figure S17. DOSY-2mmol-1-plot, D=14.1×10⁻¹⁰m²/s

Figure S20. 2DDOSY spectrum (600MHz, CDCl₃, 298 K) of 1. [1] = 70 mM.