Electronic Supplementary Information

Anion-controlled structural motif in one-dimensional coordination networks *via* cooperative weak noncovalent interactions

Behrouz Notash, Nasser Safari* and Hamid Reza Khavasi

Chemistry Department, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran

*To whom correspondence should be addressed

Tel.: +98 21 29902886; *Fax*: +98 21 22431661 *E-mail address:* <u>*n-safari@cc.sbu.ac.ir*</u> (*N. Safari*) Table S1. Crystal data and structure refinement for 1.

Identification code	(1)
Empirical formula	$C_{22}H_{18}Cl_{4}Hg_{2}N_{6} \\$
Formula weight	909.40
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, $P2_1/c$
Unit cell dimensions	a = 11.582(2) Å alpha = 90 [°] b = 15.457(3) Å beta = 92.69(3) [°] c = 14.730(3) Å gamma = 90 [°]
Volume	2634.1(9) Å ³
Z, Calculated density	4, 2.293 Mg/m ³
Absorption coefficient	12.071 mm ⁻¹
F(000)	1680
Crystal size	$0.17\times0.12\times0.12~mm$
Theta range for data collection	1.76 to 29.27 [°]
Limiting indices	-15<=h<=15, -21<=k<=19, -15<=l<=20
Reflections collected / unique	20628 / 7103 [<i>R</i> (int) = 0.0671]
Completeness to theta $= 29.27$	98.8 %
Absorption correction	Numerical
Max. and min. transmission	0.233 and 0.190
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7103 / 0 / 307
Goodness-of-fit on F ²	1.155
Final <i>R</i> indices [I>2sigma(I)]	R1 = 0.0609, wR2 = 0.1001
<i>R</i> indices (all data)	R1 = 0.1114, wR2 = 0.1133
Largest diff. peak and hole	1.730 and -1.790 e.Å ⁻³

Hg(1) $-1472(1)$ $1478(1)$ $7768(1)$ $47(1)$ Hg(2) $6871(1)$ $-3522(1)$ $6662(1)$ $45(1)$ Cl(1) $-1469(4)$ $1491(3)$ $6178(2)$ $87(1)$ Cl(2) $-2549(2)$ $1392(2)$ $9088(2)$ $55(1)$ Cl(3) $8006(2)$ $-3587(2)$ $5376(2)$ $53(1)$ Cl(4) $6894(3)$ $-3479(2)$ $8276(2)$ $64(1)$ N(1) $5657(6)$ $5254(5)$ $6440(5)$ $37(2)$ N(2) $3230(7)$ $4222(6)$ $7499(6)$ $46(2)$ N(3) $-112(6)$ $2599(6)$ $8244(6)$ $40(2)$ N(4) $-166(6)$ $272(5)$ $8082(5)$ $38(2)$ N(5) $2988(7)$ $-1439(7)$ $7127(6)$ $52(2)$ N(6) $5558(6)$ $-2388(6)$ $6231(6)$ $41(2)$ C(1) $4774(8)$ $5076(7)$ $6972(7)$ $41(2)$ C(3) $5359(8)$ $3893(7)$ $5709(7)$ $45(2)$ C(4) $4432(8)$ $3733(6)$ $6256(6)$ $40(2)$
Hg(2) $6871(1)$ $-3522(1)$ $6662(1)$ $45(1)$ Cl(1) $-1469(4)$ $1491(3)$ $6178(2)$ $87(1)$ Cl(2) $-2549(2)$ $1392(2)$ $9088(2)$ $55(1)$ Cl(3) $8006(2)$ $-3587(2)$ $5376(2)$ $53(1)$ Cl(4) $6894(3)$ $-3479(2)$ $8276(2)$ $64(1)$ N(1) $5657(6)$ $5254(5)$ $6440(5)$ $37(2)$ N(2) $3230(7)$ $4222(6)$ $7499(6)$ $46(2)$ N(3) $-112(6)$ $2599(6)$ $8244(6)$ $40(2)$ N(4) $-166(6)$ $272(5)$ $8082(5)$ $38(2)$ N(5) $2988(7)$ $-1439(7)$ $7127(6)$ $52(2)$ N(6) $5558(6)$ $-2388(6)$ $6231(6)$ $41(2)$ C(1) $4774(8)$ $5076(7)$ $6972(7)$ $41(2)$ C(2) $5941(7)$ $4667(6)$ $5817(6)$ $38(2)$ C(3) $5359(8)$ $3893(7)$ $5709(7)$ $45(2)$ C(4) $4432(8)$ $3733(6)$ $6256(6)$ $40(2)$ C(5) $4128(8)$ $4339(6)$ $6879(7)$ $39(2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
N(1) $5657(6)$ $5254(5)$ $6440(5)$ $37(2)$ N(2) $3230(7)$ $4222(6)$ $7499(6)$ $46(2)$ N(3) $-112(6)$ $2599(6)$ $8244(6)$ $40(2)$ N(4) $-166(6)$ $272(5)$ $8082(5)$ $38(2)$ N(5) $2988(7)$ $-1439(7)$ $7127(6)$ $52(2)$ N(6) $5558(6)$ $-2388(6)$ $6231(6)$ $41(2)$ C(1) $4774(8)$ $5076(7)$ $6972(7)$ $41(2)$ C(2) $5941(7)$ $4667(6)$ $5817(6)$ $38(2)$ C(3) $5359(8)$ $3893(7)$ $5709(7)$ $45(2)$ C(4) $4432(8)$ $3733(6)$ $6256(6)$ $40(2)$ C(5) $4128(8)$ $4339(6)$ $6879(7)$ $39(2)$
N(2) $3230(7)$ $4222(6)$ $7499(6)$ $46(2)$ N(3) $-112(6)$ $2599(6)$ $8244(6)$ $40(2)$ N(4) $-166(6)$ $272(5)$ $8082(5)$ $38(2)$ N(5) $2988(7)$ $-1439(7)$ $7127(6)$ $52(2)$ N(6) $5558(6)$ $-2388(6)$ $6231(6)$ $41(2)$ C(1) $4774(8)$ $5076(7)$ $6972(7)$ $41(2)$ C(2) $5941(7)$ $4667(6)$ $5817(6)$ $38(2)$ C(3) $5359(8)$ $3893(7)$ $5709(7)$ $45(2)$ C(4) $4432(8)$ $3733(6)$ $6256(6)$ $40(2)$ C(5) $4128(8)$ $4339(6)$ $6879(7)$ $39(2)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccc} C(2) & 5941(7) & 4667(6) & 5817(6) & 38(2) \\ C(3) & 5359(8) & 3893(7) & 5709(7) & 45(2) \\ C(4) & 4432(8) & 3733(6) & 6256(6) & 40(2) \\ C(5) & 4128(8) & 4339(6) & 6879(7) & 39(2) \\ \end{array}$
$\begin{array}{ccccc} C(3) & 5359(8) & 3893(7) & 5709(7) & 45(2) \\ C(4) & 4432(8) & 3733(6) & 6256(6) & 40(2) \\ C(5) & 4128(8) & 4339(6) & 6879(7) & 39(2) \\ \end{array}$
C(4) 4432(8) 3733(6) 6256(6) 40(2) C(5) 4128(8) 4339(6) 6879(7) 39(2)
C(5) 4128(8) 4339(6) 6879(7) 39(2)
-2(2) $+20(0)$ $+20(0)$ $+00(0)$ $+00(0)$
C(6) 2417(8) 3708(6) 7299(7) 38(2)
C(7) 1513(7) 3497(8) 7937(7) 42(2)
C(8) 1445(10) 3895(8) 8768(8) 53(3)
C(9) 580(10) 3638(8) 9329(8) 56(3)
C(10) -158(10) 2999(8) 9047(8) 51(3)
C(11) 726(8) 2866(7) 7694(7) 42(2)
C(12) 694(8) 87(7) 7543(7) 44(2)
C(13) -281(8) -212(7) 8822(6) 38(2)
C(14) 445(8) -886(7) 9046(7) 44(2)
C(15) 1333(8) -1094(7) 8477(7) 40(2)
C(16) 1457(7) -593(7) 7705(7) 36(2)
C(17) 2355(8) -771(7) 7070(7) 42(2)
C(18) 3877(8) -1572(8) 6513(7) 45(2)
C(19) 3997(11) -1141(10) 5701(9) 74(4)
C(20) 4906(12) -1321(11) 5155(10) 84(5)
C(21) 5688(8) -1953(7) 5477(7) 46(3)
C(22) 4666(8) -2202(6) 6736(7) 37(2)

Table S2. Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **1**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Hg(1)-Cl(1)	2.341(3)
$H_{g}(1) - Cl(2)$	2363(2)
$H_{g}(1) V(2)$	2.303(2) 2.423(8)
$H_{g}(1) - N(3)$ $H_{g}(1) - N(4)$	2.423(0)
$H_{2}(1) - IN(4)$	2.452(0)
Hg(2)-CI(3)	2.358(2)
Hg(2)-N(1)#1	2.372(7)
Hg(2)-Cl(4)	2.378(3)
Hg(2)-N(6)	2.387(9)
N(1)-C(2)	1.342(12)
N(1)-C(1)	1.346(11)
N(1)-Hg(2)#2	2.372(7)
N(2)-C(6)	1.257(12)
N(2)-C(5)	1.428(12)
N(3)-C(10)	1.338(13)
N(3)-C(11)	1.357(11)
N(4)-C(12)	1.333(11)
N(4)-C(13)	1.334(12)
N(5)-C(17)	1.266(14)
N(5)-C(18)	1.200(11) 1.417(12)
N(6)- $C(21)$	1313(13)
N(6) - C(22)	1.313(13) 1.331(11)
C(1) C(5)	1.331(11) 1.365(14)
C(1)- $C(3)$	1.303(14)
$C(1) - \Pi(1)$	0.9300
C(2)-C(3)	1.378(14)
C(2)-H(2)	0.9300
C(3)-C(4)	1.394(12)
C(3)-H(3)	0.9300
C(4)-C(5)	1.369(13)
C(4)-H(4)	0.9300
C(6)-C(7)	1.476(12)
C(6)-H(6)	0.9300
C(7)-C(11)	1.371(15)
C(7)-C(8)	1.376(16)
C(8)-C(9)	1.386(14)
C(8)-H(8)	0.9300
C(9)-C(10)	1.358(16)
C(9)-H(9)	0.9300
C(10)-H(10)	0.9300
C(11)-H(11)	0.9300
C(12)-C(16)	1.387(14)
C(12)-H(12)	0.9300
C(12) - C(14)	1.370(14)
C(13)-U(13)	0.9300
$C(13) - \Pi(13)$ C(14) C(15)	1.304(13)
C(14)- $C(13)C(14)$ $H(14)$	1.394(13)
$C(14)-\Pi(14)$ C(15) C(16)	0.9300
C(13)-C(10) C(15) $U(15)$	1.309(14)
$U(13)-\Pi(13)$	0.9300
C(16)-C(17)	1.457(12)
C(17)-H(17)	0.9300

Table S3. Bond lengths [Å] and angles $[\circ]$ for 1.

C(18)-C(22)	1.366(14)
C(18)-C(19)	1.382(17)
C(19)-C(20)	1.383(15)
C(19)-H(19)	0.9300
C(20)-C(21)	1.400(18)
C(20)-H(20)	0.9300
C(21)-H(21)	0.9300
C(22)-H(22)	0.9300
Cl(1)-Hg(1)-Cl(2)	148.13(13)
Cl(1)-Hg(1)-N(3)	104.6(2)
Cl(2)-Hg(1)-N(3)	99.4(2)
Cl(1)-Hg(1)-N(4)	99.6(2)
Cl(2)-Hg(1)-N(4)	98.52(19)
N(3)-Hg(1)-N(4)	95.9(3)
Cl(3)-Hg(2)-N(1)#1	101.8(2)
Cl(3)-Hg(2)-Cl(4)	145.51(10)
N(1)#1-Hg(2)-Cl(4)	97 9(2)
Cl(3)-Hg(2)-N(6)	101.0(2)
$N(1)#1-H\sigma(2)-N(6)$	100.5(3)
Cl(4)-Hg(2)-N(6)	100.9(3) 102.8(2)
C(2)-N(1)-C(1)	102.0(2) 118 5(8)
C(2)-N(1)-C(1) $C(2)-N(1)-H_{0}(2)=2$	118.3(6)
C(2)-N(1)-Hg(2)#2 C(1)-N(1)-Hg(2)#2	1230(7)
$C(1)$ - $N(1)$ - $\Pi g(2)\pi 2$ C(6) N(2) C(5)	123.0(7) 110 3(0)
C(0) = N(2) = C(3) C(10) = N(3) = C(11)	119.3(9) 116 5(9)
C(10) - N(3) - C(11) $C(10) - N(3) - H_0(1)$	110.3(9) 122.3(6)
C(10)- $N(3)$ - $Hg(1)C(11)$ $N(3)$ $Hg(1)$	122.3(0) 121.2(7)
C(11)-N(3)-Hg(1) C(12) N(4) $C(12)$	121.2(7) 118 2(0)
C(12)-N(4)- $C(13)C(12)$ N(4) U ₂ (1)	110.2(9) 101.8(7)
C(12)-N(4)-Hg(1) C(12) N(4) Hg(1)	121.0(7) 120.0(6)
$C(13)-N(4)-\Pi g(1)$ C(17) N(5) C(19)	120.0(0) 120.8(10)
C(17)- $N(3)$ - $C(10)C(21)$ $N(6)$ $C(22)$	120.0(10)
C(21)-N(0)- $C(22)$	119.0(9)
C(21)-N(0)-Hg(2) C(22) N(6) H ₂ (2)	120.2(0) 120.7(7)
C(22)-N(0)-Hg(2)	120.7(7)
N(1)-C(1)-C(5)	122.0(9)
N(1)-C(1)-H(1)	118./
C(5)-C(1)-H(1)	118./
N(1)-C(2)-C(3)	122.1(8)
N(1)-C(2)-H(2)	119.0
C(3)-C(2)-H(2)	119.0
C(2)-C(3)-C(4)	118.2(9)
C(2)-C(3)-H(3)	120.9
C(4)-C(3)-H(3)	120.9
C(5)-C(4)-C(3)	119.7(9)
C(5)-C(4)-H(4)	120.2
C(3)-C(4)-H(4)	120.2
C(1)-C(5)-C(4)	118.8(9)
C(1)-C(5)-N(2)	116.9(9)
C(4)-C(5)-N(2)	124.1(9)
N(2)-C(6)-C(7)	122.4(10)
N(2)-C(6)-H(6)	118.8
C(7)-C(6)-H(6)	118.8
C(11)-C(7)-C(8)	119.0(9)
C(11)-C(7)-C(6)	118.3(10)
C(8)-C(7)-C(6)	122.7(10)

C(7)-C(8)-C(9)	118.4(11)
C(7)-C(8)-H(8)	120.8
C(9)-C(8)-H(8)	120.8
C(10)-C(9)-C(8)	119.3(11)
C(10)-C(9)-H(9)	120.4
C(8)-C(9)-H(9)	120.4
N(3)-C(10)-C(9)	123.7(9)
N(3)-C(10)-H(10)	118.2
C(9)-C(10)-H(10)	118.2
N(3)-C(11)-C(7)	123.1(10)
N(3)-C(11)-H(11)	118.5
C(7)-C(11)-H(11)	118.5
N(4)-C(12)-C(16)	123.3(10)
N(4)-C(12)-H(12)	118.4
C(16)-C(12)-H(12)	118.4
N(4)-C(13)-C(14)	122.6(9)
N(4)-C(13)-H(13)	118.7
C(14)-C(13)-H(13)	118.7
C(13)-C(14)-C(15)	119.5(10)
C(13)-C(14)-H(14)	120.3
C(15)-C(14)-H(14)	120.3
C(16)-C(15)-C(14)	118.2(10)
C(16)-C(15)-H(15)	120.9
C(14)-C(15)-H(15)	120.9
C(12)-C(16)-C(15)	118.2(8)
C(12)-C(16)-C(17)	120.2(10)
C(15)-C(16)-C(17)	121.6(9)
N(5)-C(17)-C(16)	122.7(10)
N(5)-C(17)-H(17)	118.6
C(16)-C(17)-H(17)	118.6
C(22)-C(18)-C(19)	117.3(9)
C(22)-C(18)-N(5)	116.6(10)
C(19)-C(18)-N(5)	126.0(10)
C(18)-C(19)-C(20)	121.1(12)
C(18)-C(19)-H(19)	119.4
C(20)-C(19)-H(19)	119.4
C(19)-C(20)-C(21)	116.1(12)
C(19)-C(20)-H(20)	121.9
C(21)-C(20)-H(20)	121.9
N(6)-C(21)-C(20)	123.1(9)
N(6)-C(21)-H(21)	118.4
C(20)-C(21)-H(21)	118.4
N(6)-C(22)-C(18)	123.1(10)
N(6)-C(22)-H(22)	118.4
C(18)-C(22)-H(22)	118.4

Symmetry transformations used to generate equivalent atoms: #1 x,y-1,z #2 x,y+1,z

Table S4. Selected bond length (Å) and bond angles (°) for $\mathbf{1}^{a}$

	2 (22(0))	H (0) N(1) #]	0.070/7
Hg(1)-N(3)	2.423(8)	$Hg(2)=N(1)^{m}$	2.372(7
Hg(1)-N(4)	2.432(8)	Hg(2)-N(6)	2.387(9
Hg(1)-Cl(1)	2.341(3)	Hg(2)-Cl(3)	2.358(2
Hg(1)-Cl(2)	2.363(2)	Hg(2)-Cl(4)	2.378(3
C(6)-N(2)	1.257(12)	C(17)-N(5)	1.266(1
Cl(1)-Hg(1)-Cl(2)	148.13(13)	Cl(3)-Hg(2)-Cl(4)	145.51(
N(3)-Hg(1)-N(4)	95.9(3)	$N(6) - Hg(2) - N(1)^{\#1}$	100.5(3
Cl(1)-Hg(1)-N(3)	104.6(2)	Cl(3)-Hg(2)-N(6)	101.0(2
Cl(2)-Hg(1)-N(3)	99.4(2)	Cl(4)-Hg(2)-N(6)	102.8(2
Cl(1)-Hg(1)-N(4)	99.6(2)	$Cl(3)-Hg(2)-N(1)^{\#1}$	101.8(2
Cl(2)-Hg(1)-N(4)	98.52(19)	$Cl(4)-Hg(2)-N(1)^{\#1}$	97.9(2)
^{<i>a</i>} Symmetry code: #1: x,	y–1, z		

	<i>U</i> 11	U22	<i>U</i> 33	U23	<i>U</i> 13	<i>U</i> 12
Hg(1) 44(1)	52(1)	46(1)	6(1)	15(1)	2(1)
Hg(2	42(1)	41(1)	52(1)	-7(1)	17(1)	-2(1)
Cl(1)	132(3)	82(2)	47(2)	8(2)	18(2)	7(3)
Cl(2)	41(1)	69(2)	56(1)	15(2)	27(1)	6(1)
Cl(3)	42(1)	63(2)	56(1)	-8(1)	14(1)	-1(1)
Cl(4)	87(2)	58(2)	48(1)	-6(2)	24(1)	2(2)
N(1)	34(4)	37(4)	39(4)	-2(3)	5(3)	-7(3)
N(2)	43(4)	49(6)	48(5)	-3(4)	16(4)	-3(4)
N(3)	34(4)	45(5)	40(4)	12(4)	4(3)	2(3)
N(4)	37(4)	41(5)	38(4)	-9(3)	10(3)	-2(3)
N(5)	37(4)	59(6)	62(5)	-3(5)	13(4)	14(4)
N(6)	37(4)	43(5)	44(5)	-10(4)	15(3)	1(3)
C(1)	36(5)	41(6)	45(5)	2(4)	13(4)	0(4)
C(2)	33(4)	43(5)	40(5)	5(4)	7(4)	-2(4)
C(3)	42(5)	43(5)	51(6)	-7(5)	10(4)	-1(4)
C(4)	36(4)	39(6)	45(5)	-2(4)	4(4)	-11(4)
C(5)	34(4)	40(5)	44(5)	9(5)	6(4)	5(4)
C(6)	35(4)	38(6)	42(5)	3(4)	10(4)	1(4)
C(7)	35(4)	41(5)	52(5)	16(5)	12(4)	1(5)
C(8)	58(6)	48(6)	55(7)	4(5)	10(5)	-12(5)
C(9)	70(7)	56(8)	45(6)	-9(6)	23(5)	-15(6)
C(10)	54(6)	54(7)	47(6)	2(5)	16(5)	-12(5)
C(11)	31(4)	42(6)	54(6)	6(5)	15(4)	8(4)
C(12)	40(5)	48(6)	46(6)	0(5)	17(4)	2(4)
C(13)	34(4)	43(6)	36(5)	-2(4)	3(4)	-3(4)
C(14)	46(5)	45(6)	41(5)	-5(4)	11(4)	-7(4)
C(15)	40(5)	40(5)	42(5)	-10(4)	0(4)	2(4)
C(16)) 23(4)	37(5)	49(5)	-12(4)	11(3)	-4(4)
C(17)	34(4)	43(6)	48(6)	-5(4)	7(4)	-2(4)
C(18)	34(4)	47(6)	55(6)	-11(5)	10(4)	-1(4)
C(19)	62(7)	97(11)	64(8)	15(7)	20(6)	37(7)
C(20)	80(9)	99(12)	76(9)	21(8)	48(7)	31(8)
C(21)	33(5)	59(7)	48(6)	-9(5)	16(4)	7(4)
C(22)	40(5)	35(5)	39(5)	-11(4)	14(4)	-1(4)

Table S5. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **1**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

	X	y z	z U(ec	1)
H(1)	4596	5470	7422	49
H(2)	6549	4787	5446	46
H(3)	5579	3489	5282	54
H(4)	4022	3217	6197	48
H(6)	2385	3450	6727	45
H(8)	1967	4326	8949	64
H(9)	506	3900	9891	67
H(10)	-728	2830	9435	61
H(11)	767	2609	7125	50
H(12)	786	431	7034	53
H(13)	-879	-87	9201	45
H(14)	347	-1203	9574	53
H(15)	1829	-1554	8611	48
H(17)	2469	-379	6605	50
H(19)	3458	-723	5519	89
H(20)	4994	-1038	4605	100
H(21)	6329	-2071	5142	56
H(22)	4577	-2518	7266	45

Table S6. Hydrogen coordinates (×10⁴) and isotropic displacement parameters (Å² × 10³) for 1.

Table S7.Torsion angles [°] for 1.

Cl(1)-Hg(1)-N(3)-C(10)	156.0(8)
Cl(2)-Hg(1)-N(3)-C(10)	-2.7(8)
N(4)-Hg(1)-N(3)-C(10)	-102.4(8)
Cl(1)-Hg(1)-N(3)-C(11)	-22.6(7)
Cl(2)-Hg(1)-N(3)-C(11)	178.7(7)
N(4)-Hg(1)-N(3)-C(11)	79.0(7)
Cl(1)-Hg(1)-N(4)-C(12)	31.1(8)
Cl(2)-Hg(1)-N(4)-C(12)	-175.2(8)
N(3)-Hg(1)-N(4)-C(12)	-74.8(8)
Cl(1)-Hg(1)-N(4)-C(13)	-150.6(7)
Cl(2)-Hg(1)-N(4)-C(13)	3.1(7)
N(3)-Hg(1)-N(4)-C(13)	103.5(7)

Cl(3)-Hg(2)-N(6)-C(21)	-5.6(8)
N(1)#1-Hg(2)-N(6)-C(21)	-110.0(8)
Cl(4)-Hg(2)-N(6)-C(21)	149.2(8)
Cl(3)-Hg(2)-N(6)-C(22)	172.5(7)
N(1)#1-Hg(2)-N(6)-C(22)	68.1(8)
Cl(4)-Hg(2)-N(6)-C(22)	-32.6(8)
C(2)-N(1)-C(1)-C(5)	-2.7(15)
$H_{\sigma}(2)$ #2-N(1)-C(1)-C(5)	-1754(7)
C(1)-N(1)-C(2)-C(3)	-0.1(14)
$H_{\sigma}(2)$ #2-N(1)-C(2)-C(3)	173 0(8)
N(1)-C(2)-C(3)-C(4)	14(15)
C(2) - C(3) - C(4) - C(5)	-0.1(15)
N(1)-C(1)-C(5)-C(4)	4.0(15)
N(1) - C(1) - C(5) - C(4)	178 8(0)
$\Gamma(1) - C(1) - C(3) - \Gamma(2)$ $\Gamma(2) - C(3) - \Gamma(3) - \Gamma(2)$	170.0(9)
C(3) - C(4) - C(5) - C(1) C(3) - C(4) - C(5) - N(2)	-2.3(13)
C(5)-C(4)-C(5)-N(2)	-170.9(10)
C(0) - N(2) - C(3) - C(1)	139.9(10)
C(5) N(2) - C(5) - C(4)	-25.5(15)
C(3)-N(2)-C(0)-C(7)	1/4.7(9)
N(2)-C(6)-C(7)-C(11)	-1/3./(10)
N(2)-C(6)-C(7)-C(8)	4.9(16)
C(11)-C(7)-C(8)-C(9)	0.2(17)
C(6)-C(7)-C(8)-C(9)	-178.5(10)
C(7)-C(8)-C(9)-C(10)	0.8(19)
C(11)-N(3)-C(10)-C(9)	-0.4(17)
Hg(1)-N(3)-C(10)-C(9)	-179.0(9)
C(8)-C(9)-C(10)-N(3)	-1(2)
C(10)-N(3)-C(11)-C(7)	1.4(15)
Hg(1)-N(3)-C(11)-C(7)	-179.9(7)
C(8)-C(7)-C(11)-N(3)	-1.3(16)
C(6)-C(7)-C(11)-N(3)	177.4(9)
C(13)-N(4)-C(12)-C(16)	1.4(15)
Hg(1)-N(4)-C(12)-C(16)	179.7(7)
C(12)-N(4)-C(13)-C(14)	0.0(14)
Hg(1)-N(4)-C(13)-C(14)	-178.4(7)
N(4)-C(13)-C(14)-C(15)	-1.2(15)
C(13)-C(14)-C(15)-C(16)	1.0(14)
N(4)-C(12)-C(16)-C(15)	-1.4(15)
N(4)-C(12)-C(16)-C(17)	178.2(9)
C(14)-C(15)-C(16)-C(12)	0.2(14)
C(14)-C(15)-C(16)-C(17)	-179.4(9)
C(18)-N(5)-C(17)-C(16)	-177.9(9)
C(12)-C(16)-C(17)-N(5)	-171.7(10)
C(15)-C(16)-C(17)-N(5)	7.9(15)
C(17)-N(5)-C(18)-C(22)	166.5(10)
C(17)-N(5)-C(18)-C(19)	-15.5(18)
C(22)-C(18)-C(19)-C(20)	-2(2)
N(5)-C(18)-C(19)-C(20)	179.7(13)
C(18)-C(19)-C(20)-C(21)	0(2)
C(22)-N(6)-C(21)-C(20)	-2.5(18)
$H_{g}(2)-N(6)-C(21)-C(20)$	175.6(11)
C(19)-C(20)-C(21)-N(6)	3(2)
C(21)-N(6)-C(22)-C(18)	-0.6(15)
$H_{g}(2)-N(6)-C(22)-C(18)$	-178 8(7)
C(19)-C(18)-C(22)-N(6)	3.0(17)
N(5)-C(18)-C(22)-N(6)	-178 8(9)
$11(3) C(10) C(22)^{-11}(0)$	1,0.0())

Symmetry transformations used to generate equivalent atoms: #1 x,y-1,z #2 x,y+1,z

 Table S8. Crystal data and structure refinement for 2.

Identification code	(2)
Empirical formula	$C_{22}H_{18}Br_4Hg_2N_6\\$
Formula weight	1087.21
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, <i>P</i> ī
Unit cell dimensions	$a = 8.2037(16) \text{ Å} alpha = 88.07(3) [^{\circ}]$ $b = 11.926(2) \text{ Å} beta = 82.43(3) [^{\circ}]$ $c = 14.227(3) \text{ Å} gamma = 87.89(3) [^{\circ}]$
Volume	1378.3(5) Å ³
Z, Calculated density	2, 2.620 Mg/m ³
Absorption coefficient	16.945 mm ⁻¹
F(000)	984
Crystal size	$0.27 \times 0.14 \times 0.12 \text{ mm}$
Theta range for data collection	1.71 to 29.28 [°]
Limiting indices	-10<=h<=11, -16<=k<=16, -19<=l<=18
Reflections collected / unique	15726 / 7422 [<i>R</i> (int) = 0.1031]
Completeness to theta = 29.28	98.6 %
Absorption correction	Numerical
Max. and min. transmission	0.132 and 0.071
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7422 / 0 / 308
Goodness-of-fit on F^2	1.127
Final <i>R</i> indices [I>2sigma(I)]	R1 = 0.0748, wR2 = 0.1744
R indices (all data)	R1 = 0.1123, wR2 = 0.1947
Extinction coefficient	0.0023(3)
Largest diff. peak and hole	3.391 and -1.936 e.Å ⁻³

	x y	Z	U(eq)		
Hg(1)	1326(1)	-1731(1)	7218(1)	48(1)	
Hg(2)	-2029(1)	6412(1)	12541(1)	49(1)	
Br(1)	3873(2)	-1851(2)	8017(1)	69(1)	
Br(2)	-652(2)	-2963(1)	6600(1)	54(1)	
Br(3)	109(2)	7536(1)	13116(1)	55(1)	
Br(4)	-4604(2)	6530(3)	11809(2)	91(1)	
N(1)	7307(13)	5192(10)	3883(8)	44(2)	
N(2)	4422(14)	1979(10)	5247(8)	46(2)	
N(3)	2051(14)	-527(10)	5891(8)	45(2)	
N(4)	-421(15)	-493(11)	8222(8)	52(3)	
N(5)	41(19)	1892(13)	9680(9)	62(3)	
N(6)	-249(16)	5106(10)	11582(8)	48(3)	
C(1)	6309(15)	4318(10)	3880(9)	41(3)	
C(2)	7993(16)	5320(12)	4697(9)	45(3)	
C(3)	7668(17)	4606(13)	5493(10)	49(3)	
C(4)	6648(16)	3733(12)	5453(9)	46(3)	
C(5)	5943(14)	3565(10)	4660(9)	38(2)	
C(6)	4852(17)	2671(10)	4541(10)	44(3)	
C(7)	3465(16)	1022(11)	5097(9)	42(3)	
C(8)	3139(17)	685(12)	4220(9)	46(3)	
C(9)	2222(18)	-266(11)	4205(9)	45(3)	
C(10)	1722(17)	-851(11)	5036(10)	45(3)	
C(11)	2921(17)	394(12)	5885(10)	47(3)	
C(12)	196(19)	327(11)	8649(9)	46(3)	
C(13)	-2050(20)	-598(14)	8299(10)	56(4)	
C(14)	-3130(20)	120(20)	8849(12)	79(6)	
C(15)	-2460(20)	976(16)	9316(12)	63(4)	
C(16)	-790(20)	1073(12)	9230(9)	48(3)	
C(17)	-704(18)	2697(12)	10088(9)	46(3)	
C(18)	70(20)	3521(11)	10595(9)	48(3)	
C(19)	1840(20)	3541(14)	10563(10)	57(4)	
C(20)	2420(20)	4369(16)	11053(13)	65(4)	
C(21)	1360(19)	5131(14)	11549(11)	56(4)	
C(22)	-888(17)	4323(11)	11088(9)	44(3)	
. ,	. /		. /	. /	

Table S9. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for **2**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

$H_{\sigma}(1)$ -N(3)	2358(11)
$\mathbf{H}_{\mathbf{A}}(1) \mathbf{H}_{\mathbf{A}}(3)$	2.3550(11)
Hg(1)-N(4)	2.392(12)
Hg(1)-Br(2)	2.4901(16)
$H_{\sigma}(1)$ -Br(1)	2 5045(18)
$H_{2}(1) D(1)$	2.3013(10)
Hg(2)-N(1)#1	2.378(11)
Hg(2)-N(6)	2.422(13)
$H_{\alpha}(2) B_{r}(4)$	2 171(2)
$\operatorname{Hg}(2)$ -BI(4)	2.474(2)
Hg(2)-Br(3)	2.4835(16)
N(1)-C(1)	1.349(15)
N(1) C(2)	1.269(17)
N(1)-C(2)	1.308(17)
N(1)-Hg(2)#2	2.378(11)
N(2)-C(6)	1 299(16)
N(2) C(7)	1.299(10)
N(2)-C(7)	1.440(10)
N(3)-C(11)	1.332(17)
N(3)-C(10)	1 351(16)
N(4) C(12)	1.331(10) 1.210(10)
N(4)-C(12)	1.318(10)
N(4)-C(13)	1.336(19)
N(5)-C(17)	1.24(2)
N(5) C(17)	1.24(2) 1.424(10)
N(5)-C(16)	1.424(19)
N(6)-C(21)	1.316(19)
N(6) - C(22)	1349(17)
$\Gamma(0) C(22)$	$1.3 \pm 7(17)$
C(1)-C(5)	1.411(17)
C(1)-H(1)	0.9300
C(2) $C(3)$	1 306(10)
C(2)- $C(3)$	1.570(17)
C(2)-H(2)	0.9300
C(3)-C(4)	1.366(18)
C(3) $H(3)$	0.0300
	0.9300
C(4)-C(5)	1.359(19)
C(4)-H(4)	0.9300
C(5) $C(6)$	1.446(17)
C(3)- $C(0)$	1.440(17)
C(6)-H(6)	0.9300
C(7)-C(11)	1.361(18)
$\mathbf{C}(7) - \mathbf{C}(8)$	1 386(18)
C(7)- $C(8)$	1.300(10)
C(8)-C(9)	1.386(17)
C(8)-H(8)	0.9300
C(9) C(10)	1.375(18)
C(y)- $C(10)$	1.373(10)
C(9)-H(9)	0.9300
C(10)-H(10)	0.9300
$\mathbf{C}(11)$ $\mathbf{H}(11)$	0.0300
$C(11) - \Pi(11)$	0.9300
C(12)-C(16)	1.40(2)
C(12)-H(12)	0.9300
C(13)-C(14)	1.39(2)
C(12) U(12)	1.57(2)
C(13)-H(13)	0.9300
C(14)-C(15)	1.40(2)
C(14)-H(14)	0.9300
$C(1+)-\Pi(1+)$	0.9500
C(15)-C(16)	1.37(2)
C(15)-H(15)	0.9300
C(17) - C(18)	1.452(19)
C(17) - C(10)	1.+52(17)
C(1/)-H(1/)	0.9300
C(18)-C(22)	1.368(19)
C(18)-C(19)	1.44(2)
C(10) $C(10)$	1.77(2)
C(19)-C(20)	1.36(2)
C(19)-H(19)	0.9300
C(20)- $C(21)$	1 38(2)
C(20) $C(21)$	0.0200
C(20)-H(20)	0.9300
C(21)-H(21)	0.9300

Table S10. Bond lengths [Å] and angles $[\circ]$ for 2.

C(22)-H(22)	0.9300
N(3)-Hg(1)-N(4)	100.5(4)
N(3)-Hg(1)-Br(2)	101.3(3)
N(4)-Hg(1)-Br(2)	103.2(3)
N(3)-Hg(1)-Br(1)	103.4(3)
N(4)-Hg(1)-Br(1)	101.9(3)
Br(2)-Hg(1)-Br(1)	140.60(7)
N(1)#1-Hg(2)-N(6)	97.5(4)
N(1)#1-Hg(2)-Br(4)	103.1(3)
N(6)-Hg(2)-Br(4)	104.8(3)
N(1)#1-Hg(2)-Br(3)	100.1(3)
N(6)-Hg(2)-Br(3)	98 9(3)
$Rr(4)-H\sigma(2)-Br(3)$	144 10(9)
C(1)-N(1)-C(2)	1163(11)
$C(1) - N(1) - H_{\sigma}(2) = 0$	123.0(9)
$C(2) - N(1) - H_{\sigma}(2) + 2$	120.7(8)
$C(2) N(1) \Pi_{2}(2) = 2$ C(6) = N(2) = C(7)	120.7(0) 119 2(11)
C(0) = N(2) = C(1) C(11) = N(3) = C(10)	115.2(11) 115.9(12)
C(11)- $N(3)$ - $C(10)C(11)$ $N(3)$ Hg(1)	113.9(12) 125.6(0)
C(11) - N(3) - Hg(1) C(10) N(2) Hg(1)	123.0(9)
C(10)- $N(3)$ - $ng(1)C(12)$ $N(4)$ $C(12)$	110.0(0) 120.0(14)
C(12)-IN(4)- $C(13)C(12)$ N(4) U ₂ (1)	120.0(14) 120.0(10)
C(12)-IN(4)-Hg(1) C(12) N(4) H ₂ (1)	120.9(10)
C(13)-IN(4)-Hg(1)	118.9(10)
C(17)-N(5)-C(16)	122.1(15)
C(21)-N(6)-C(22)	118.6(13)
C(21)-N(6)-Hg(2)	120.7(9)
C(22)-N(6)-Hg(2)	120.7(10)
N(1)-C(1)-C(5)	123.7(12)
N(1)-C(1)-H(1)	118.1
C(5)-C(1)-H(1)	118.1
N(1)-C(2)-C(3)	122.5(11)
N(1)-C(2)-H(2)	118.7
C(3)-C(2)-H(2)	118.7
C(4)-C(3)-C(2)	118.9(12)
C(4)-C(3)-H(3)	120.6
C(2)-C(3)-H(3)	120.6
C(5)-C(4)-C(3)	120.9(13)
C(5)-C(4)-H(4)	119.6
C(3)-C(4)-H(4)	119.6
C(4)-C(5)-C(1)	117.7(11)
C(4)-C(5)-C(6)	125.5(12)
C(1)-C(5)-C(6)	116.9(12)
N(2)-C(6)-C(5)	119.5(12)
N(2)-C(6)-H(6)	120.2
C(5)-C(6)-H(6)	120.2
C(11)-C(7)-C(8)	119.0(12)
C(11)-C(7)-N(2)	116.0(12)
C(8)-C(7)-N(2)	124.9(12)
C(7)-C(8)-C(9)	117.2(12)
C(7)-C(8)-H(8)	121.4
C(9)-C(8)-H(8)	121.4
C(10)-C(9)-C(8)	119.9(12)
C(10)-C(9)-H(9)	120.0
C(8)-C(9)-H(9)	120.0
N(3)-C(10)-C(9)	122.9(12)
N(3)-C(10)-H(10)	118.6
C(9)-C(10)-H(10)	118.6
N(3)-C(11)-C(7)	125.0(13)
N(3)-C(11)-H(11)	117.5
C(7)-C(11)-H(11)	117.5

N(4)-C(12)-C(16)	122.5(14)
N(4)-C(12)-H(12)	118.7
C(16)-C(12)-H(12)	118.7
N(4)-C(13)-C(14)	121.6(15)
N(4)-C(13)-H(13)	119.2
C(14)-C(13)-H(13)	119.2
C(13)-C(14)-C(15)	118.0(16)
C(13)-C(14)-H(14)	121.0
C(15)-C(14)-H(14)	121.0
C(16)-C(15)-C(14)	119.7(15)
C(16)-C(15)-H(15)	120.1
C(14)-C(15)-H(15)	120.1
C(15)-C(16)-C(12)	118.1(13)
C(15)-C(16)-N(5)	125.1(14)
C(12)-C(16)-N(5)	116.9(14)
N(5)-C(17)-C(18)	124.1(15)
N(5)-C(17)-H(17)	118.0
C(18)-C(17)-H(17)	118.0
C(22)-C(18)-C(19)	119.1(13)
C(22)-C(18)-C(17)	119.2(14)
C(19)-C(18)-C(17)	121.6(13)
C(20)-C(19)-C(18)	116.0(15)
C(20)-C(19)-H(19)	122.0
C(18)-C(19)-H(19)	122.0
C(19)-C(20)-C(21)	121.2(16)
C(19)-C(20)-H(20)	119.4
C(21)-C(20)-H(20)	119.4
N(6)-C(21)-C(20)	122.7(14)
N(6)-C(21)-H(21)	118.6
C(20)-C(21)-H(21)	118.6
N(6)-C(22)-C(18)	122.3(14)
N(6)-C(22)-H(22)	118.9
C(18)-C(22)-H(22)	118.9

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z+1 #2 x+1,y,z-1

Table 511. Selected bolid length (A) and bolid angles () for 2					
Hg(1)-N(3)	2.358(1	$Hg(2)-N(1)^{\#1}$	2.378(1		
Hg(1)-N(4)	2.392(1	Hg(2)-N(6)	2.422(1		
Hg(1)-Br(1)	2.5045(Hg(2)– $Br(3)$	2.4835(
Hg(1)-Br(2)	2.4901(Hg(2)– $Br(4)$	2.474(2)		
C(6)-N(2)	1.299(1	C(17)-N(5)	1.24(2)		
Br(1)-Hg(1)-Br(2)	140.60(Br(3)-Hg(2)-	144.10(
N(3)-Hg(1)-N(4)	100.5(4	N(6)-Hg(2)-	97.5(4)		
Br(1)-Hg(1)-N(3)	103.4(3	Br(3)-Hg(2)-	98.9(3)		
Br(2)-Hg(1)-N(3)	101.3(3	Br(4)-Hg(2)-	104.8(3)		
Br(1)-Hg(1)-N(4)	101.9(3	Br(3)-Hg(2)-	100.1(3)		
Br(2)-Hg(1)-N(4)	103.2(3	Br(4)-Hg(2)-	103.1(3)		
^{<i>a</i>} Symmetry code: #1: x-1,y,z+1					

Table S11. Selected bond length (Å) and bond angles (°) for 2^a

Table S12. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **2**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a*² U11 + ... + 2 h k a* b* U12]

<i>U</i> 11	U22 U	33 U23	<i>U</i> 13	<i>U</i> 12	
$H_{0}(1) = 55(1)$) 48(1)	41(1) -5(1)	-1(1)	-15(1)	
$H_{g}(2) = 50(1)$	50(1)	49(1) -4(1)	-6(1)	-13(1)	
Br(1) 54(1)	103(1)	53(1) -7(1)	-7(1)	-24(1)	
Br(2) = 61(1)	44(1) 5	59(1) -6(1)	-11(1)	-14(1)	
Br(3) 64(1	45(1)	50(1) -3(1)	-14(1)	-19(1)	
Br(4) 51(1)	152(2)	73(1) 4(1)	-14(1)	-12(1)	
N(1) 36(5)	44(6) 4	7(6) -3(5)	8(4)	-5(5)	
N(2) 44(6)	45(6) 4	7(6) -4(5)	-2(5)	-4(5)	
N(3) 52(6)	42(6) 3	9(5) -2(4)	-1(4)	-6(5)	
N(4) 49(6)	59(7) 4	5(6) -8(5)	5(5)	-15(6)	
N(5) 75(9)	63(8) 4	8(7) -15(6)	-10(6)	7(7)	
N(6) 62(7)	40(6) 4	2(6) 2(5)	-6(5)	-6(5)	
C(1) 35(6)	36(6) 5	0(7) 4(5)	1(5)	-10(5)	
C(2) 39(6)	48(7) 5	1(7) -7(6)	-8(5)	-18(6)	
C(3) 46(7)	56(8) 4	-5(7) $-3(6)$	-6(5)	-7(6)	
C(4) 42(7)	50(7) 4	-1(6) $2(5)$	10(5)	-13(6)	
C(5) 33(6)	35(6) 4	4(6) -5(5)	6(5)	1(5)	
C(6) 56(8)	31(6) 4	4(7) 2(5)	-4(5)	-5(6)	
C(7) 41(6)	43(7) 4	-1(6) $-5(5)$	4(5)	-6(6)	
C(8) 49(7)	47(7) 4	3(7) 9(5)	-9(5)	-14(6)	
C(9) 59(8)	36(6) 4	2(6) 1(5)	-5(6)	-14(6)	
C(10) 47(7) 39(6) 3	51(7) -3(5)	-10(5)	-7(6)	
C(11) 45(7) 44(7) :	50(7) -3(6)	-1(5)	-2(6)	
C(12) 63(8) 38(6) .	38(6) -5(5)	-8(6)	-12(6)	
C(13) 63(9) 60(9)	45(7) -7(6)	-13(6)	0(8)	
C(14) 51(9) 129(18) :	59(10) -39(1)	1) -1(7)	-9(10)	
C(15) 49(8) 72(11)	69(10) -37(9) -6(7)	11(8)	
C(16) 69(9) 42(7) (34(6) -8(5)	-7(6)	-4(7)	

C(17)	46(7)	46(7)	43(7)	-5(5)	6(5)	-7(6)
C(18)	67(9)	37(6)	39(6)	0(5)	0(6)	-6(6)
C(19)	64(9)	61(9)	44(7)	-8(6)	8(6)	-1(8)
C(20)	48(8)	69(11)	76(11)	-14(9)	-4(7)	-4(8)
C(21)	53(8)	61(9)	56(8)	-19(7)	-7(6)	-13(7)
C(22)	44(7)	39(6)	45(7)	-7(5)	9(5)	-9(6)

Table S13. Hydrogen coordinates $(\times 10^4)$ and isotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **2.**

	X	y :	z U(eq)	
H(1)	5836	4205	3333	49
H(2)	8704	5904	4722	54
H(3)	8137	4723	6040	58
H(4)	6434	3248	5977	55
H(6)	4462	2591	3963	53
H(8)	3520	1081	3664	55
H(9)	1946	-508	3633	54
H(10)	1131	-1497	5009	54
H(11)	3178	627	6464	56
H(12)	1329	410	8559	55
H(13)	-2470	-1164	7976	67
H(14)	-4261	33	8905	95
H(15)	-3149	1475	9683	76
H(17)	-1831	2778	10069	55
H(19)	2535	3020	10228	69
H(20)	3544	4421	11053	78
H(21)	1803	5685	11873	67
H(22)	-2021	4328	11082	53

Table S14.Torsion angles [°] for 2.

N(4)-Hg(1)-N(3)-C(11)	64.5(12)
Br(2)-Hg(1)-N(3)-C(11)	170.4(11)
Br(1)-Hg(1)-N(3)-C(11)	-40.5(12)
N(4)-Hg(1)-N(3)-C(10)	-123.2(10)
Br(2)-Hg(1)-N(3)-C(10)	-17.3(11)
Br(1)-Hg(1)-N(3)-C(10)	131.7(10)
N(3)-Hg(1)-N(4)-C(12)	-72.6(11)
Br(2)-Hg(1)-N(4)-C(12)	-176.9(10)
Br(1)-Hg(1)-N(4)-C(12)	33.7(11)
N(3)-Hg(1)-N(4)-C(13)	103.2(11)
Br(2)-Hg(1)-N(4)-C(13)	-1.1(12)
Br(1)-Hg(1)-N(4)-C(13)	-150.5(11)
N(1)#1-Hg(2)-N(6)-C(21)	-98.1(12)
Br(4)-Hg(2)-N(6)-C(21)	156.2(11)
Br(3)-Hg(2)-N(6)-C(21)	3.4(12)
N(1)#1-Hg(2)-N(6)-C(22)	80.4(10)
Br(4)-Hg(2)-N(6)-C(22)	-25.3(10)
Br(3)-Hg(2)-N(6)-C(22)	-178.1(9)
C(2)-N(1)-C(1)-C(5)	0.8(19)
$H_{g}(2)$ #2-N(1)-C(1)-C(5)	177.9(9)
C(1)-N(1)-C(2)-C(3)	-1(2)
$H_{g}(2)$ #2-N(1)-C(2)-C(3)	-178.4(11)
N(1)-C(2)-C(3)-C(4)	1(2)
C(2)-C(3)-C(4)-C(5)	-1(2)
C(3)-C(4)-C(5)-C(1)	0(2)
C(3)-C(4)-C(5)-C(6)	179.8(14)
N(1)-C(1)-C(5)-C(4)	0(2)
N(1)-C(1)-C(5)-C(6)	-179.9(13)
C(7)-N(2)-C(6)-C(5)	-174.0(12)
C(4)-C(5)-C(6)-N(2)	3(2)
C(1)-C(5)-C(6)-N(2)	-177.4(13)
C(6)-N(2)-C(7)-C(11)	-173.8(13)
C(6)-N(2)-C(7)-C(8)	9(2)
C(11)-C(7)-C(8)-C(9)	2(2)
N(2)-C(7)-C(8)-C(9)	178.9(14)
C(7)-C(8)-C(9)-C(10)	-2(2)
C(11)-N(3)-C(10)-C(9)	-1(2)
Hg(1)-N(3)-C(10)-C(9)	-174.0(11)
C(8)-C(9)-C(10)-N(3)	2(2)
C(10)-N(3)-C(11)-C(7)	1(2)
Hg(1)-N(3)-C(11)-C(7)	173.4(11)
C(8)-C(7)-C(11)-N(3)	-2(2)
N(2)-C(7)-C(11)-N(3)	-178.7(13)
C(13)-N(4)-C(12)-C(16)	3(2)
Hg(1)-N(4)-C(12)-C(16)	179.2(10)
C(12)-N(4)-C(13)-C(14)	-2(2)
Hg(1)-N(4)-C(13)-C(14)	-178.0(14)
N(4)-C(13)-C(14)-C(15)	1(3)
C(13)-C(14)-C(15)-C(16)	-1(3)
C(14)-C(15)-C(16)-C(12)	2(3)
C(14)-C(15)-C(16)-N(5)	-179.0(17)
N(4)-C(12)-C(16)-C(15)	-3(2)
N(4)-C(12)-C(16)-N(5)	177.5(13)
C(17)-N(5)-C(16)-C(15)	-10(2)

C(17)-N(5)-C(16)-C(12)	168.6(14)
C(16)-N(5)-C(17)-C(18)	176.9(12)
N(5)-C(17)-C(18)-C(22)	-174.6(15)
N(5)-C(17)-C(18)-C(19)	8(2)
C(22)-C(18)-C(19)-C(20)	1(2)
C(17)-C(18)-C(19)-C(20)	178.8(14)
C(18)-C(19)-C(20)-C(21)	0(3)
C(22)-N(6)-C(21)-C(20)	-2(2)
Hg(2)-N(6)-C(21)-C(20)	176.6(13)
C(19)-C(20)-C(21)-N(6)	0(3)
C(21)-N(6)-C(22)-C(18)	3(2)
Hg(2)-N(6)-C(22)-C(18)	-175.2(10)
C(19)-C(18)-C(22)-N(6)	-3(2)
C(17)-C(18)-C(22)-N(6)	179.3(12)

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z+1 #2 x+1,y,z-1

Table S15. Crystal data and structure refinement for 3.

Identification code	(3)
Empirical formula	$C_{11}H_9HgI_2N_3$
Formula weight	637.60
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, $P2_1/n$
Unit cell dimensions	$a = 8.6931(17)$ Å $alpha = 90 [^{\circ}]$ $b = 12.727(3)$ Å $beta = 93.54(3) [^{\circ}]$ $c = 13.158(3)$ Å $gamma = 90 [^{\circ}]$
Volume	1453.0(6) Å ³
Z, Calculated density	4, 2.915 Mg/m ³
Absorption coefficient	14.825 mm ⁻¹
F(000)	1128
Crystal size	$0.12 \times 0.12 \times 0.10 \text{ mm}$
Theta range for data collection	2.23 to 29.23 [°]
Limiting indices	-11<=h<=11, -17<=k<=17, -17<=l<=18
Reflections collected / unique	11016 / 3909 [<i>R</i> (int) = 0.0893]
Completeness to theta = 29.23	99.2 %
Absorption correction	Numerical
Max. and min. transmission	0.225 and 0.193
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3909 / 0 / 155
Goodness-of-fit on F^2	1.172
Final <i>R</i> indices [I>2sigma(I)]	R1 = 0.0793, wR2 = 0.1845
R indices (all data)	R1 = 0.1007, wR2 = 0.1978
Extinction coefficient	0.0022(4)
Largest diff. peak and hole	4.112 and -5.039 e.Å ⁻³

	x y	Z	U(eq)	
Hg(1)	2532(1)	7273(1)	3589(1)	48(1)
I(1)	4675(1)	7436(1)	2248(1)	60(1)
I(2)	-218(1)	6412(1)	3691(1)	79(1)
N(3)	3998(13)	6561(9)	5073(8)	48(2)
C(11)	3369(17)	6307(12)	5931(11)	54(3)
C(10)	5528(15)	6342(10)	5054(9)	42(2)
N(2)	3908(14)	5298(11)	8479(9)	54(3)
C(7)	4083(15)	5886(10)	6771(10)	46(3)
C(6)	3268(18)	5677(13)	7700(10)	53(3)
C(9)	6375(15)	5925(12)	5854(12)	52(3)
C(8)	5664(15)	5696(11)	6711(11)	48(3)
C(1)	3131(16)	4184(11)	9830(10)	46(3)
C(5)	3067(14)	5160(11)	9341(10)	46(3)
C(4)	2249(19)	5982(11)	9752(11)	55(3)
N(1)	2382(11)	3998(8)	10662(8)	41(2)
C(2)	1581(15)	4767(11)	11077(11)	49(3)
C(3)	1533(19)	5765(13)	10661(12)	59(4)
~ /	` '	``'	``'	. /

Table S16. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for **3**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

$H_{\sigma}(1)-N(1)#1$	2,405(10)
$H_{g}(1) N(2)$	2.100(10) 2.440(12)
$\frac{11g(1)-1N(3)}{11g(1)}$	2.440(12)
Hg(1)-I(2)	2.6404(12)
Hg(1)-I(1)	2.6518(12)
N(3)-C(11)	1.325(17)
N(3)-C(10)	1.360(17)
C(11)-C(7)	1.34(2)
C(11) U(11)	0.0200
$C(11)-\Pi(11)$	0.9500
C(10)-C(9)	1.35(2)
C(10)-H(10)	0.9300
N(2)-C(6)	1.234(18)
N(2)-C(5)	1.397(16)
C(7)- $C(8)$	1 402(18)
C(7) C(6)	1.102(10) 1.475(17)
C(r) = C(0)	1.473(17)
C(0)- $H(0)$	0.9300
C(9)-C(8)	1.351(19)
C(9)-H(9)	0.9300
C(8)-H(8)	0.9300
C(1)-N(1)	1.329(14)
C(1)- $C(5)$	1.399(18)
C(1)-H(1)	0.9300
$C(1) - \Pi(1)$	1.202(10)
C(3)-C(4)	1.392(19)
C(4)-C(3)	1.409(19)
C(4)-H(4)	0.9300
N(1)-C(2)	1.338(16)
N(1)-Hg(1)#2	2.405(10)
C(2)-C(3)	1.38(2)
C(2)-H(2)	0.9300
C(2) $H(2)$	0.9300
$N(1) \# 1 H_{-}(1) N(2)$	0.9500
N(1)#1-Hg(1)-N(3)	90.5(4)
N(1)#1-Hg(1)-I(2)	111.3(2)
N(3)-Hg(1)-I(2)	103.6(3)
N(1)#1-Hg(1)-I(1)	101.3(2)
N(3)-Hg(1)-I(1)	102.0(3)
I(2)-Hg(1)-I(1)	137.87(5)
C(11)-N(3)-C(10)	114 9(11)
$C(11) N(3) H_{q}(1)$	1233(0)
C(11) - N(3) - Hg(1)	123.3(9) 121.7(9)
C(10)-N(3)-Hg(1)	121.7(8)
N(3)-C(11)-C(7)	127.1(13)
N(3)-C(11)-H(11)	116.4
C(7)-C(11)-H(11)	116.4
C(9)-C(10)-N(3)	123.5(11)
C(9)-C(10)-H(10)	118.3
N(3)-C(10)-H(10)	118.3
C(6) N(2) C(5)	110.3 110.4(12)
$C(0)^{-1}(2)^{-}C(3)$	117.4(12) 115.2(12)
C(11)-C(7)-C(8)	115.5(12)
C(11)-C(7)-C(6)	122.1(12)
C(8)-C(7)-C(6)	122.5(12)

Table S17. Bond lengths [Å] and angles $[\circ]$ for 3.

N(2)-C(6)-C(7)	123.0(13)
N(2)-C(6)-H(6)	118.5
C(7)-C(6)-H(6)	118.5
C(8)-C(9)-C(10)	118.6(12)
C(8)-C(9)-H(9)	120.7
C(10)-C(9)-H(9)	120.7
C(9)-C(8)-C(7)	120.6(13)
C(9)-C(8)-H(8)	119.7
C(7)-C(8)-H(8)	119.7
N(1)-C(1)-C(5)	122.0(12)
N(1)-C(1)-H(1)	119.0
C(5)-C(1)-H(1)	119.0
C(4)-C(5)-N(2)	121.7(13)
C(4)-C(5)-C(1)	119.7(12)
N(2)-C(5)-C(1)	118.5(12)
C(5)-C(4)-C(3)	116.5(13)
C(5)-C(4)-H(4)	121.8
C(3)-C(4)-H(4)	121.8
C(1)-N(1)-C(2)	120.0(11)
C(1)-N(1)-Hg(1)#2	119.7(8)
C(2)-N(1)-Hg(1)#2	120.3(8)
N(1)-C(2)-C(3)	121.0(12)
N(1)-C(2)-H(2)	119.5
C(3)-C(2)-H(2)	119.5
C(2)-C(3)-C(4)	120.8(13)
C(2)-C(3)-H(3)	119.6
C(4)-C(3)-H(3)	119.6

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y+1/2,-z+3/2 #2 -x+1/2,y-1/2,-z+3/2

Table S16. Selected bolid length (A) and bolid angles () for 5						
Hg(1)-N(3)	2.440(12	$Hg(1)-N(1)^{\#1}$	2.405(1			
Hg(1)-I(1)	2.6518(1	Hg(1)-I(2)	2.6404(
C(6)-N(2)	1.234(18	C(5) - N(2)	1.397(1			
I(1)-Hg(1)-I(2)	137.87(5	N(3)-Hg(1)-	90.5(4)			
N(3)-Hg(1)-I(1)	102.0(3)	N(3) - Hg(1) - I(103.6(3)			
$I(1)-Hg(1)-N(1)^{\#1}$	101.3(2)	I(2)-Hg(1)-N(111.3(2)			
^{<i>a</i>} Symmetry code: #1: -x+ $1/2$, y+ $1/2$, -z+ $3/2$.						

Table S18. Selected bond length (Å) and bond angles (°) for 3^{a}

Table S19. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **3**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

	<i>U</i> 11	U22	<i>U</i> 33	U23	<i>U</i> 13	<i>U</i> 12
	47(1)	54(1)	13(1)	1(1)	15(1)	1(1)
I(1)	60(1)	72(1)	+3(1) 52(1)	A(1)	28(1)	-1(1) 3(1)
I(1) I(2)	51(1)	72(1) 70(1)	110(1)	-4(1)	20(1) 27(1)	-3(1) 12(1)
I(2) N(2)	$\frac{31(1)}{40(6)}$	52(6)	110(1) 12(6)	-3(1)	27(1)	-13(1)
N(3)	49(0)	33(0)	45(0)	1(3)	9(3)	4(3)
$C(\Pi)$	49(7)	64(8)	52(7)	14(6)	15(6)	24(6)
C(10)	48(6)	46(6)	34(6)	-3(5)	7(5)	-4(5)
N(2)	51(6)	70(7)	42(6)	5(5)	15(5)	0(6)
C(7)	43(6)	49(6)	46(6)	2(5)	3(5)	4(5)
C(6)	60(8)	67(8)	32(6)	8(6)	11(5)	13(6)
C(9)	37(6)	60(8)	58(8)	-6(6)	1(5)	0(5)
C(8)	44(6)	53(7)	48(7)	-10(6)	0(5)	1(5)
C(1)	52(7)	50(6)	37(6)	5(5)	17(5)	8(5)
C(5)	38(6)	51(6)	48(7)	3(5)	6(5)	-2(5)
C(4)	74(9)	45(6)	46(7)	0(5)	9(7)	5(6)
N(1)	37(5)	45(5)	43(5)	2(4)	11(4)	-2(4)
C(2)	44(6)	57(7)	46(7)	-11(6)	12(5)	-3(5)
C(3)	65(9)	63(8)	52(8)	-3(7)	18(7)	13(7)

Table S20. Hydrogen coordinates (× 10^4) and isotropic displacement parameters (Å² × 10^3) for 3.

Table S21. Torsion angles [°] for 3.

N(1)#1 H. (1) N(2) C(11)	81 2/12)
N(1)#1-Hg(1)-N(3)-C(11)	81.2(12)
I(2)-Hg(1)-N(3)-C(11)	-30.9(12)
I(1)-Hg(1)-N(3)-C(11)	-1//.1(11)
N(1)#1-Hg(1)-N(3)-C(10)	-102.5(10)
I(2)-Hg(1)-N(3)-C(10)	145.4(9)
I(1)-Hg(1)-N(3)-C(10)	-0.8(10)
C(10)-N(3)-C(11)-C(7)	2(2)
Hg(1)-N(3)-C(11)-C(7)	178.1(12)
C(11)-N(3)-C(10)-C(9)	-2(2)
Hg(1)-N(3)-C(10)-C(9)	-178.5(10)
N(3)-C(11)-C(7)-C(8)	0(2)
N(3)-C(11)-C(7)-C(6)	177.4(15)
C(5)-N(2)-C(6)-C(7)	177.6(14)
C(11)-C(7)-C(6)-N(2)	-179.5(16)
C(8)-C(7)-C(6)-N(2)	-2(2)
N(3)-C(10)-C(9)-C(8)	1(2)
C(10)-C(9)-C(8)-C(7)	0(2)
C(11)-C(7)-C(8)-C(9)	0(2)
C(6)-C(7)-C(8)-C(9)	-178.3(14)
C(6)-N(2)-C(5)-C(4)	-53(2)
C(6)-N(2)-C(5)-C(1)	130.6(17)
N(1)-C(1)-C(5)-C(4)	3(2)
N(1)-C(1)-C(5)-N(2)	179.0(12)
N(2)-C(5)-C(4)-C(3)	-175.8(14)
C(1)-C(5)-C(4)-C(3)	0(2)
C(5)-C(1)-N(1)-C(2)	-2(2)
C(5)-C(1)-N(1)-Hg(1)#2	177.3(11)
C(1)-N(1)-C(2)-C(3)	-1(2)
Hg(1)#2-N(1)-C(2)-C(3)	179.3(12)
N(1)-C(2)-C(3)-C(4)	4(2)
C(5)-C(4)-C(3)-C(2)	-4(2)
	· ·

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y+1/2,-z+3/2 #2 -x+1/2,y-1/2,-z+3/2