Electronic Supplementary Information

Crown ether-containing N-salicylidene aniline derivatives: synthesis, characterization and optical properties

Damir A. Safin,^a Koen Robeyns^a and Yann Garcia*^a

^a Institute of Condensed Matter and Nanosciences, MOST – Inorganic Chemistry, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium. Fax: +32(0) 1047 2330; Tel: +32(0) 1047 2831; E-mail: damir.safin@ksu.ru, yann.garcia@uclouvain.be

¹H NMR spectrum of 4

Fig. S1 ¹H NMR spectra of **1–4**. The solvent (CHCl₃) is marked by an asterisk.

Fig. S2 A zoomed range of the *trans*-keto form of the Kubelka-Munk spectra of 1 (black), 2 (red), 3 (blue) and 4 (purple) at 298 K.

Table S1 Selected bond lengths (A	Å) and bond angles (°) for $f 1$
-----------------------------------	----------------------------------

Bona lengths					
O(1)–C(2)	1.348(5)	O(25)–C(24)	1.431(4)	C(10)–C(11)	1.404(4)
O(13)–C(12)	1.362(4)	O(25)–C(26)	1.361(4)	C(10)–C(28)	1.373(5)
O(13)–C(14)	1.420(4)	N(9)–C(8)	1.269(4)	C(11)–C(12)	1.377(5)
O(16)–C(15)	1.413(4)	N(9)–C(10)	1.418(4)	C(12)–C(26)	1.402(4)
O(16)–C(17)	1.415(5)	C(2)–C(3)	1.394(6)	C(14)–C(15)	1.495(5)
O(16)–C(17B)	1.42(4)	C(2)–C(7)	1.395(5)	C(17)–C(18)	1.487(8)
O(19)–C(18)	1.425(6)	C(3)–C(4)	1.367(6)	C(17B)-C(18B)	1.49(4)
O(19)–C(18B)	1.41(2)	C(4)–C(5)	1.374(6)	C(20)–C(21)	1.486(6)
O(19)–C(20)	1.422(5)	C(5)–C(6)	1.383(6)	C(23)–C(24)	1.492(5)
O(22)–C(21)	1.409(5)	C(6)–C(7)	1.382(5)	C(26)–C(27)	1.379(4)
O(22)–C(23)	1.426(4)	C(7)–C(8)	1.450(5)	C(27)–C(28)	1.377(5)
Bond angles					
C(12)-O(13)-C(14)	117.8(3)	C(5)–C(6)–C(7)	121.1(3)	O(16)–C(17)–C(18)	113.0(4)
C(15)-O(16)-C(17)	114.7(4)	C(2)–C(7)–C(6)	118.8(3)	O(19)-C(18)-C(17)	116.4(5)
C(15)-O(16)-C(17B)	102.6(13)	C(2)–C(7)–C(8)	121.9(3)	O(19)-C(20)-C(21)	107.1(3)
C(18)-O(19)-C(20)	113.2(3)	C(6)–C(7)–C(8)	119.3(3)	O(22)–C(21)–C(20)	112.4(3)
C(20)-O(19)-C(18B)	125.1(11)	N(9)-C(8)-C(7)	122.8(3)	O(22)–C(23)–C(24)	111.4(3)
C(21)-O(22)-C(23)	116.6(3)	N(9)-C(10)-C(11)	124.3(3)	O(25)–C(24)–C(23)	107.8(3)
C(24)-O(25)-C(26)	117.4(2)	N(9)-C(10)-C(28)	117.4(3)	O(25)–C(26)–C(12)	115.8(3)
C(8)-N(9)-C(10)	122.2(3)	C(11)-C(10)-C(28)	118.3(3)	O(25)–C(26)–C(27)	125.0(3)
O(1)–C(2)–C(3)	118.7(3)	C(10)-C(11)-C(12)	120.6(3)	C(12)-C(26)-C(27)	119.2(3)
O(1)–C(2)–C(7)	121.5(3)	O(13)-C(12)-C(11)	125.1(3)	C(26)–C(27)–C(28)	120.2(3)
C(3)–C(2)–C(7)	119.8(3)	O(13)-C(12)-C(26)	114.9(3)	C(10)-C(28)-C(27)	121.7(3)
C(2)–C(3)–C(4)	120.0(4)	C(11)-C(12)-C(26)	120.0(3)	O(16)-C(17B)-C(18B)	115(3)
C(3)–C(4)–C(5)	120.8(4)	O(13)-C(14)-C(15)	107.3(3)	O(19)-C(18B)-C(17B)	105(2)
C(4)-C(5)-C(6)	119.5(4)	O(16)-C(15)-C(14)	108.2(2)		
Torsion angles					
C(14)-O(13)-C(12)-C(11)	-13.1(4)	O(1)-C(2)-C(7)-C(8)	0.4(5)	N(9)-C(10)-C(28)-C(27)	178.9(3)
C(14)-O(13)-C(12)-C(26)	166.2(3)	C(3)-C(2)-C(7)-C(6)	1.5(5)	C(11)-C(10)-C(28)-C(27)	-0.1(5)
C(12)-O(13)-C(14)-C(15)	-173.8(3)	C(3)-C(2)-C(7)-C(8)	-178.4(4)	C(10)-C(11)-C(12)-O(13)	178.6(3)
C(17)-O(16)-C(15)-C(14)	-171.8(4)	C(2)-C(3)-C(4)-C(5)	0.8(7)	C(10)-C(11)-C(12)-C(26)	-0.6(5)
C(15)-O(16)-C(17)-C(18)	87.8(6)	C(3)-C(4)-C(5)-C(6)	-0.7(7)	O(13)-C(12)-C(26)-O(25)	-0.1(4)
C(20)-O(19)-C(18)-C(17)	-79.8(5)	C(4)-C(5)-C(6)-C(7)	1.0(6)	O(13)-C(12)-C(26)-C(27)	-179.3(3)
C(18)-O(19)-C(20)-C(21)	-149.6(4)	C(5)-C(6)-C(7)-C(2)	-1.4(6)	C(11)-C(12)-C(26)-O(25)	179.2(3)
C(23)–O(22)–C(21)–C(20)	-84.5(4)	C(5)-C(6)-C(7)-C(8)	178.5(4)	C(11)-C(12)-C(26)-C(27)	0.1(5)
C(21)-O(22)-C(23)-C(24)	124.6(3)	C(2)-C(7)-C(8)-N(9)	0.1(6)	O(13)-C(14)-C(15)-O(16)	68.8(4)
C(26)-O(25)-C(24)-C(23)	178.3(3)	C(6)-C(7)-C(8)-N(9)	-179.8(4)	O(16)-C(17)-C(18)-O(19)	74.0(6)
C(24)-O(25)-C(26)-C(12)	-175.3(3)	C(7)-C(8)-N(9)-C(10)	176.9(3)	O(19)-C(20)-C(21)-O(22)	-169.7(3)
C(24)–O(25)–C(26)–C(27)	3.9(5)	C(11)-C(10)-N(9)-C(8)	-11.0(5)	O(22)–C(23)–C(24)–O(25)	-75.1(3)
O(1)-C(2)-C(3)-C(4)	-180.0(4)	C(28)-C(10)-N(9)-C(8)	170.2(3)	O(25)–C(26)–C(27)–C(28)	-178.6(3)
C(7)–C(2)–C(3)–C(4)	-1.2(6)	N(9)-C(10)-C(11)-C(12)	-178.2(3)	C(12)-C(26)-C(27)-C(28)	0.5(5)
O(1)-C(2)-C(7)-C(6)	-179.8(4)	C(28)-C(10)-C(11)-C(12)	0.6(5)	C(26)-C(27)-C(28)-C(10)	-0.5(6)

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

Table S2 Selected hydrogen bond lengths (Å) and angles (°) for 1

D–H····A	<i>d</i> (D–H)	<i>d</i> (H···A)	$d(D \cdots A)$	∠ (DHA)
O(1)-H(1)····N(9)	0.82	1.90	2.627(4)	147

Table S3 Selected $\pi \cdots \pi$ interactions for 1

Cg(I)	Cg(J)	Cg–Cg (Å)	Dihedral angle (°)	β (°)	
Cg(1)	Cg(1)	5.403(2)	85.92	28.23	
Cg(1)	Cg(2)	4.665(2)	12.91	37.78	
Cg(2)	Cg(1)	4.665(2)	12.91	44.28	
Cg(1): C(2)–C(3)–C(4)–C(5)–C(6)–C(7); Cg(2): C(10)–C(11)–C(12)–C(26)–C(27)–C(28)					
β : angle $Cg(I) \rightarrow Cg(J)$ vector and normal to plane I.					