Supporting information

Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: optical and magnetic properties

Xinyi Yang, ${ }^{a}$ Yingnan Wang, ${ }^{a}$ Yongming Sui, ${ }^{a}$ Xiaoli Huang, ${ }^{a}$ Tian Cui, ${ }^{a}$ Chunzhong Wang, ${ }^{b}$ Bingbing Liu, ${ }^{a}$ Guangtian Zou, ${ }^{a}$ and Bo Zou*, ${ }^{*}$

${ }^{a}$ State key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China.

E-mail: zoubo@jlu.edu.cn,
${ }^{b}$ Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China

Fig. S1 A low-magnification TEM image of the as-prepared tetrapod-shaped MnSe NCs.

Fig. S2 SAED patterns of WZ-MnSe NCs: (a) tetrapod-shaped MnSe NCs; (b) small waterdrop-shaped MnSe NCs ; (c) large waterdrop-shaped MnSe NCs.

Fig. S3 Aspect ratio histograms of WZ-MnSe NCs: (a) tetrapod-shaped MnSe NCs; (b) small waterdropshaped MnSe NCs; (c) large waterdrop-shaped MnSe NCs.

Fig. S4 (a) XRD patterns of the products synthesized in different reaction temperatures at 0 min . (b) TEM image of the tetrapod-shaped MnSe NCs synthesized at $300^{\circ} \mathrm{C}, 0 \mathrm{~min}$.

Fig. S5 TEM images of the tetrapod-shaped MnSe NCs obtained at medium heating rate ($15{ }^{\circ} \mathrm{C} / \mathrm{min}$), and all scale bars represent 100 nm .

Fig. S6 XRD pattern of the RS-MnSe NCs obtained at OA/OLA volume ratio of $1 / 3$.

Fig. S7 The variation of Néel temperature with different diameters in the anisotropic shaped WZ-MnSe NCs.

