Supporting Information for

Hydrothermal Synthesis of Needle-Like Hyperbranched Ni(SO₄)_{0.3}(OH)_{1.4}

Bundles and Their Morphology-Retentive Decompositions

to NiO for Lithium Storage

By

Wei Wen, Jin-Ming Wu, Lu-Lu Lai, Guo-Ping Ling and Min-Hua Cao

Fig. S1 XPS analysis result of the as-synthesized powder.

Fig. S2 XRD pattern of the mixture of microspheres and nanoneedles derived from $NiCl_2 \cdot 6H_2O$ (4.0 mmol), Na_2SO_4 (1.2 mmol), and urea (4.0 mmol). Refer to Fig. 3e, f for the SEM morphology.

Fig. S3 SEM image of the product derived from $NiCl_2 \cdot 6H_2O$ (4.0 mmol), Na_2SO_4 (2.4 mmol), and urea (4.0 mmol).

Fig. S4 XRD pattern of the stacked nanoplates derived from hydrothermal decomposition of aqueous nickel acetate tetrahydrate. Refer to Fig. 4a for the SEM morphology.

Fig. S5 EDS spectrum of the $Ni(SO_4)_{0.3}(OH)_{1.4}$ nanoneedle bundles annealed at 450

°C for 3 h in air.

Fig. S6 SEM image of the Ni(SO₄)_{0.3}(OH)_{1.4} nanoneedle bundles derived from nickel acetate and Na₂SO₄, followed by a subsequent calcination at 750 °C for 3 h in air.