Electronic Supplementary Information (ESI) for CrystEngComm

Guest-dependent three nitrate–water aggregations encapsulated in silver(I)-bipyridine supramolecular frameworks

Di Sun,*^a Fu-Jing Liu,^b Rong-Bin Huang,^b Lan-Sun Zheng^b

^aKey Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.

E-mail: dsun@sdu.edu.cn

^bState Key Laboratory of Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China

Content

(1) Experiment details	.2
(2) Synthesis of 1 - 3	.3
(3) X-ray Crystallography	.4
(4) Table S1: Crystal data for 1-3	.5
(5) Table S2 The C-H··· π interactions in 1-3	.6
(6) Fig. S1: IR of 1-3	.7
(7) Fig. S2: The powder XRD patterns and the simulated one from the single-cryst	al
diffraction data for complexes 1-3	.8

(1) Experiment details

Materials and General Methods.

All the reagents and solvents employed were commercially available and used as received without further purification. Infrared spectra were recorded on a Nicolet AVATAT FT-IR330 spectrometer as KBr pellets in the frequency range 4000-400 cm⁻¹. The elemental analyses (C, H, N contents) were determined on a CE instruments EA 1110 analyzer. Photoluminescence measurements were performed on a Hitachi F-7000 fluorescence spectrophotometer with solid powder on a 1 cm quartz round plate. Thermogravimetric (TG) curves were measured from 30 to 750 °C on a NETZSCH TG 209 F1 Iris® Thermogravimetric Analyser at the heating rate 10 °C/min under N₂ atmosphere (20 mL/min).

(2) Synthesis of 1 - 3

Synthesis of [Ag₄(bipy)₄·o-abn·4NO₃·6H₂O]_n (1)

Reaction of a mixture of AgNO₃ (17 mg, 0.1 mmol), bipy·2H₂O (19.4 mg, 0.1 mmol) and *o*-abn (12 mg, 0.1 mmol) in methanol-H₂O (6 mL, v:v = 1:2) under the ultrasonic condition (160W, 40 KHz, 40 min, room temperature). Then aqueous NH₃ solution (25%, 0.5 mL) was dropped into the mixture to give a clear solution. The resultant solution was allowed to evaporate slowly in darkness at room temperature for several days to give pale-yellow crystals of **1** (Yield: 51%, based on silver). Anal. Calc. (found) for $C_{47}H_{50}Ag_4N_{14}O_{18}$: C, 36.88 (36.69); H, 3.29 (3.58); N, 12.81 (12.30) %. IR (KBr): ν (cm⁻¹) = 3412 (s), 2201 (m), 1652 (m), 1600 (s), 1486 (m), 1382 (s), 1225 (m), 807 (m).

Synthesis of [Ag₃(bipy)₃·*m*-abn·3NO₃·2H₂O]_n (2):

Synthesis of **2** is the similar to that of **1**, but using *m*-abn (12 mg, 0.1 mmol) instead of *o*-abn. The crystals were isolated by filtration and dried in air. (Yield: 71%, based on silver). Anal. Calc. (found) for $C_{37}H_{34}Ag_3N_{11}O_{11}$: C, 39.25 (40.09); H, 3.03 (2.88); N, 13.61 (13.30) %. IR (KBr): $v(cm^{-1}) = 3446$ (s), 2226 (m), 1599 (s), 1390 (s), 1216 (m), 815 (w).

Synthesis of [Ag₂(bipy)₂·p-abn·2NO₃·H₂O]_n (3)

Synthesis of **3** is the similar to that of **1**, but using *p*-abn (12 mg, 0.1 mmol) instead of *o*-abn. The crystals were isolated by filtration and dried in air. (Yield: 65 %, based on silver). Anal. Calc. (found) for $C_{27}H_{24}Ag_2N_8O_7$: C, 41.14 (41.00); H, 3.07 (3.28); N, 14.22 (14.54) %. IR (KBr): $v(cm^{-1}) = 3441$ (s), 2205 (s), 1599 (s), 1384 (s), 1225 (m), 1161 (w), 1069 (w), 801 (w).

(3) X-ray Crystallography

Single crystals of the complexes 1-3 with appropriate dimensions were chosen under an optical microscope and quickly coated with high vacuum grease (Dow Corning Corporation) before being mounted on a glass fiber for data collection. Data were collected on a Rigaku R-AXIS RAPID Image Plate single–crystal diffractometer (Mo K α radiation, $\lambda = 0.71073$ Å) equipped with an Oxford Cryostream low-temperature apparatus operating at 50 kV and 90 mA in ω scan mode for 1-3. A total of $44 \times 5.00^{\circ}$ oscillation images was collected, each being exposed for 5.0 min. Absorption correction was applied by correction of symmetry-equivalent reflections using the ABSCOR program.¹ In all cases, the highest possible space group was chosen. All structures were solved by direct methods using SHELXS-97² and refined on F^2 by full-matrix least-squares procedures with SHELXL-97.³ Atoms were located from iterative examination of difference F-maps following least squares refinements of the earlier models. Hydrogen atoms were placed in calculated positions and included as riding atoms with isotropic displacement parameters 1.2 - 1.5 times U_{eq} of the attached C atoms. The hydrogen atoms attached to oxygen were refined with O-H = 0.85 Å, and $U_{iso}(H) = 1.2U_{eq}(O)$. All structures were examined using the Addsym subroutine of PLATON⁴ to assure that no additional symmetry could be applied to the models. In 1, The highest peaks 1.29 and the deepest hole -1.10 locate close to Ag with distances of 0.98 and 1.38 Å, respectively. In 3, The highest peaks 1.42 and the deepest hole -0.90 locate close to Ag with distances of 0.88 and 0.76 Å, respectively. These could be ascribed to the ghosts of the heavy atom (Fourier truncation errors).

- (1) Higashi, T. ABSCOR, Empirical Absorption Correction based on Fourier Series Approximation, Rigaku Corporation, Tokyo, 1995.
- (2) Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Determination, University of Gottingen, Germany, 1997.
- (3) Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Gottingen, Germany, 1997.
- (4) Spek, A. L. Implemented as the PLATON Procedure, a Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 1998.

Empirical formula	$C_{47}H_{50}Ag_{4}N_{14}O_{18}\left(1\right)$	$C_{37}H_{34}Ag_{3}N_{11}O_{11}\left(2\right)$	$C_{27}H_{24}Ag_{2}N_{8}O_{7}\left(\boldsymbol{3}\right)$					
Formula weight	1530.49	1132.36	788.28					
Temperature/K	173(2)	293(2)	173(2)					
Crystal system	triclinic	monoclinic	monoclinic					
Space group	<i>P</i> -1	Cc	<i>P</i> 2 ₁ /c					
a/Å	11.328(2)	19.314(4)	14.010(4)					
b/Å	13.975(3)	12.146(2)	11.380(3)					
c/Å	18.270(3)	17.814(4)	18.085(5)					
α/°	106.019(4)	90.00	90.00					
β/°	100.171(4)	106.86(3)	101.627(5)					
γ/°	102.572(3)	90.00	90.00					
Volume/Å ³	2625.6(9)	3999.4(14)	2824.2(13)					
Z	2	4	4					
$\rho_{calc} mg/mm^3$	1.936	1.881	1.854					
µ/mm ⁻¹	1.559	1.530	1.449					
F(000)	1524.0	2248.0	1568.0					
Crystal size/mm ³	$0.40 \times 0.40 \times 0.20$	$0.10 \times 0.10 \times 0.08$	$0.40 \times 0.40 \times 0.20$					
2Θ range for data collection	2.4 to 50°	6.7 to 49.98°	2.96 to 50°					
Index ranges	$-13 \leq h \leq 13, \ -16 \leq k \leq 13, -20 \leq h \leq 22, \ -14 \leq k \leq 14, \ -21 \leq l-16 \leq h \leq 15, \ -13 \leq k \leq l+1, \ -21 \leq l-16 \leq l+1, \ -13 \leq l+1, \ -13 \leq l+1, \ -13 \leq l+1, \ -14 \leq l+1, $							
	$-17 \le l \le 21$	≤21	$\leq 8, -21 \leq l \leq 20$					
Reflections collected	13452	15101	13681					
Independent reflections	9130[R(int) = 0.0315]	6519[R(int) = 0.0381]	4950[R(int) =					
			0.0606]					
Data/restraints/parameters	9130/6/757	6519/2/559	4950/30/397					
Goodness-of-fit on F^2	1.169	1.013	1.189					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0661, wR_2 = 0.1228$	$R_1 = 0.0306, wR_2 = 0.0657$	$R_1 = 0.0767, wR_2 =$					
			0.1979					
Final R indexes [all data]	$R_1 = 0.0828, wR_2 = 0.1308$	$R_1 = 0.0344, wR_2 = 0.0688$	$R_1 = 0.0994, WR_2 =$					
			0.2106					
Largest diff. peak/hole / e Å ⁻	³ 1.29/-1.10	0.37/-0.55	1.60/-1.00					
Flack parameter	N/A	0.01(2)	N/A					

(4) Table S1: Crystal data for 1-3

(5)	Table	S2	The	C-	·H···π	intera	actions	in	1-3	
-----	-------	-----------	-----	----	--------	--------	---------	----	-----	--

Compound 1						
C-H···Cg	H···Cg(Å)	C···Cg(Å)	H···Cg(Å)			
C7-H7···Cg1	2.79	3.630(8)	148			
C37-H37Cg1	2.65	3.516(7)	151			
Cg1: C41/C42/C43/C44/C45/C46						
Compound 2						
C2-H2···Cg1A	2.96	3.846(6)	846(6) 160			
C14-H14····Cg1B	2.86	3.735(6) 158				
Cg1: C31/C32/C33/C34/C35/C36. Symmetry code: (A) x, 1-y, 1/2+z. (B) -1/2+x, 3/2-y, -1/2+z						
Compound 3						
C4-H4···Cg1C	2.63	3.460(10)) 146			
Cg1: C22/C23/C24/C25/C26/C27. Symmetry code: (C) 1-x, 1-y, 1-z.						

(6) Fig. S1: IR of 1-3

(7) Fig. S2: The powder XRD patterns and the simulated one from the

single-crystal diffraction data for complexes 1-3

