Supporting Information

Hydroquinone-assisted assembly of coordination

polymers from lanthanides and cucurbit[5]uril

Kai Chen, ^a Li-Li Liang, ^a Hao-Jing Liu, ^a Yun-Qian Zhang, ^a Sai-Feng Xue, ^a Zhu Tao, ^a Xin Xiao, ^a Qian-Jiang Zhu, ^a* Leonard F. Lindoy, ^b* and Gang Wei^c*

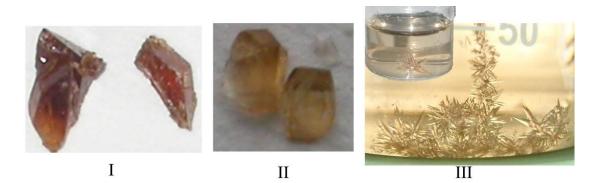
^a Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou

University, Guiyang 550025, People's Republic of China

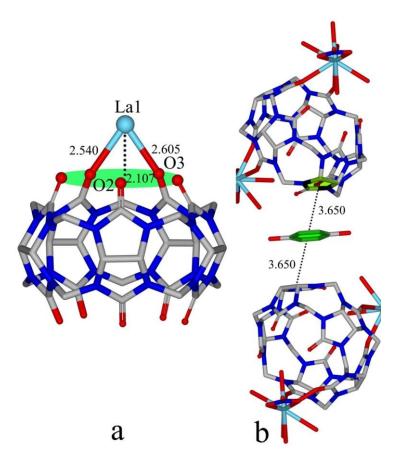
^b School of Chemistry, the University of Sydney, NSW 2006, Australia

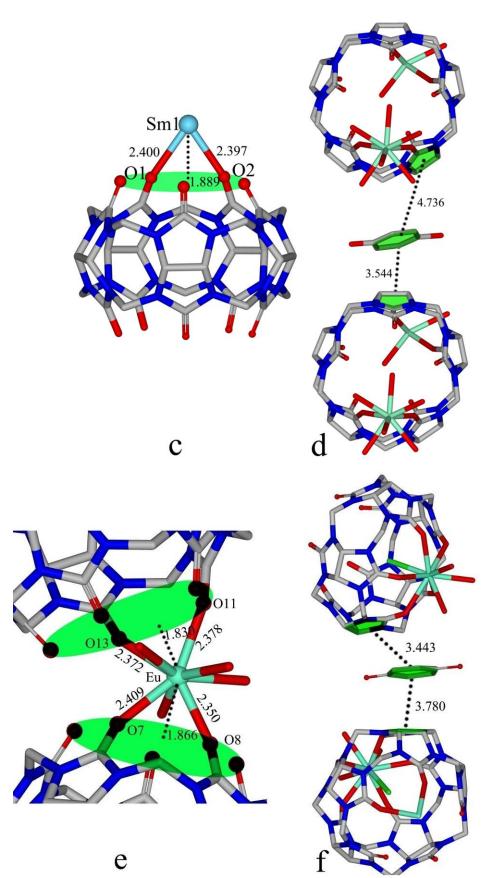
^cCSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070, Australia

The detailed bond lengths and distances in the supramolecular assemblies of Q[5] with Lanthanides are showed in SI-Table 1 and SI-Figure 2.

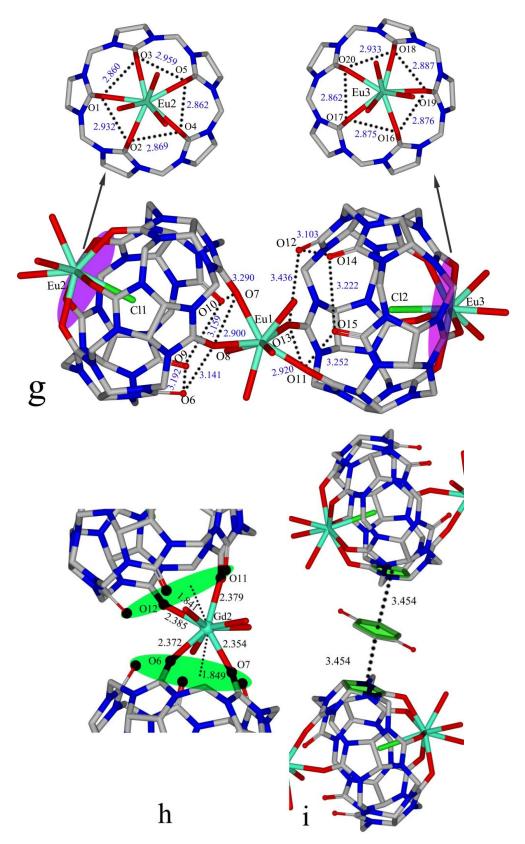

SI-Table 1 The detailed bond lengths and distances in the supramolecular assemblies of Q[5] with Lanthanides

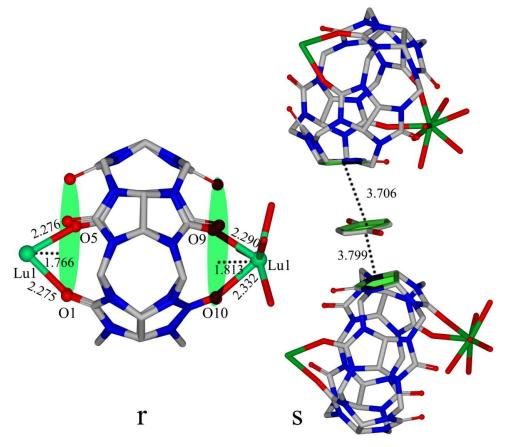
	Ln-O _(carbonyl) (Å)	Ln-O _(water) (Å)	H _{Ln-plane} (Å)	
La	2.540-2.605	2.601-2.605	2.107	
Sm	2.397-2.404	2.359-2.430	1.889	
Eu	2.350-2.409	2.360-2.432	1.830-1.866	
Gd	2.354-2.385	2.358-2.436	1.841-1.849	
Dy	2.315-2.371	2.345-2.371	1.828-1.836	
Er	2.302-2.349	2.302-2.337	1.812-1.813	
Yb	2.280-2.335	2.285-2.333	1.785-1.803	
Lu	2.275-2.332	2.286-2.329	1.766-1.813	

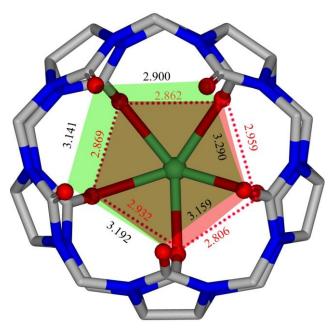

Electronic Supplementary Material (ESI) for CrystEngComm This journal is The Royal Society of Chemistry 2012


SI-Table 2 The Water molecules in Compound 1 - 8: how many water molecules were found on Fourier maps and how many water molecules were introduced with SQUEEZE.

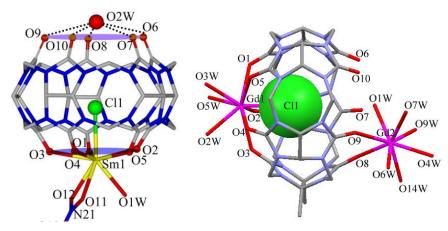
NO.	1	2	3	4	5	6	7	8
All Water molecules	14	19	52	58	13	14	16	19
Squeeze water molecules	10	8	32	48	9	10	12	15
Final water molecules	4	11	20	10	4	4	4	4



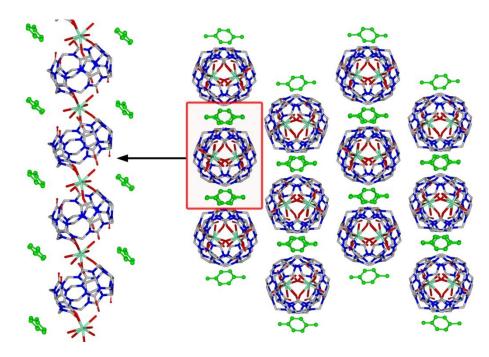

SI-Figure 1. The single-crystal photos of compounds corresponding to three different supramolecular assemblies.



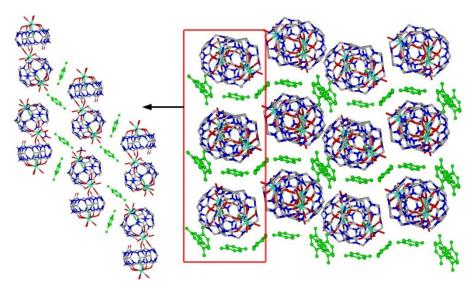
Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

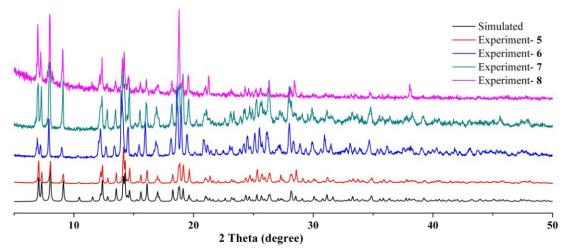


SI-Figure 2. The detailed bond lengths and distances in the supramolecular assemblies of Q[5] incorporating lanthanides

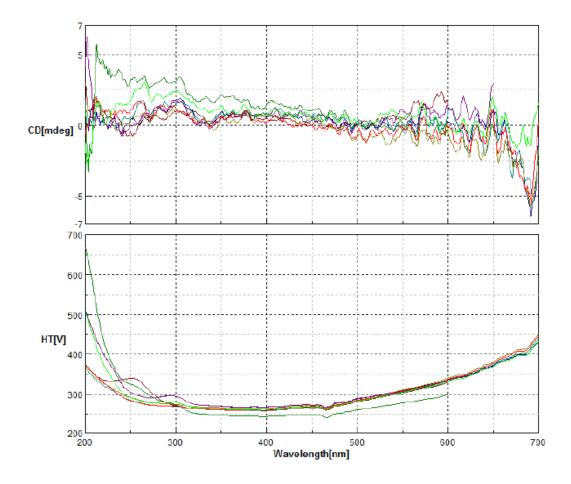


SI-Figure 3. Comparison to the two portal sizes of a Q[5] molecule in the Q[5]-pair found in compounds 3 and 4


Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012


SI-Figure 4 discrete "molecular bowl" and half covered "molecular bowl" of Q[5] molecule with Ln^{3+}

SI-Figure 5 the supramolecular assemblies corresponding to the Q[5]-light lanthanides (Figure3b)


SI-Figure 6 the supramolecular assemblies corresponding to the Q[5]- moderately heavy lanthanides (Figure3c)

SI-Figure 7 Powder X-ray diffraction (PXRD) of Complexes 5-8 and a comparison with simulation show that the sample produced is phase pure.

It is well known that the solid-state circular dichroism (CD) spectroscopy is the most effective method to calculate the enantionmeric excess values. However, investigation using solid-state CD spectroscopy in a KBr pellet showed that every single crystal of complexs 5-8 were CD-silent¹. The result suggests the sample in present case had undergone spontaneous resolution with an enantiomeric excess value of 50%. It should be noted that the enantiomeric excess value of compound 5-8 are stochastic and variable.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

SI-Figure 7 the solid-state circular dichroism (CD) spectroscopy of complexs 5-8 Reference: 1. K. Chen, Y.-F. Hu, X. Xiao, S.-F. Xue, Z. Tao, Y.-Q. Zhang, Q.-J. Zhu and J.-X. Liu, RSC Adv. 2012, **2**, 3217.