Supplementary information

Syntheses, crystal structures, magnetism, thermal stabilities

and luminescence of four new metal phosphonates

Ruibiao Fu*, Shengmin Hu, Xintao Wu

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002 China

• Corresponding author. E-mail: furb@fjirsm.ac.cn

Mn(1)-N(1)	2.336(5)	Mn(2)-O(1)	2.233(4)
$Mn(1)-N(2)^{c}$	2.366(5)	$Mn(2)-O(1)^{a}$	2.233 (4)
Mn(1)-O(1)	2.281(4)	$Mn(2)-O(1)^{b}$	2.233(4)
$Mn(1)-O(2)^{a}$	2.042(4)	$Mn(2)-O(1)^{d}$	2.237(4)
$Mn(1)-O(3)^{b}$	2.070(5)	$Mn(2)-O(1)^{e}$	2.233(4)
Mn(1)-O(4)	2.299(6)	$Mn(2)-O(1)^{f}$	2.233(4)
$N(1)-Mn(1)-N(2)^{c}$	98.49(17)	$O(1)-Mn(2)-O(1)^{a}$	91.88(14)
N(1)-Mn(1)-O(1)	82.75(14)	$O(1)-Mn(2)-O(1)^{b}$	88.12(14)
$N(1)-Mn(1)-O(2)^{a}$	152.4(2)	$O(1)-Mn(2)-O(1)^{d}$	88.12(14)
$N(1)-Mn(1)-O(3)^{b}$	102.07(18)	$O(1)-Mn(2)-O(1)^{e}$	180.0
N(1)-Mn(1)-O(4)	70.86(17)	$O(1)-Mn(2)-O(1)^{f}$	91.88(14)
$N(2)^{c}-Mn(1)-O(1)$	177.14(18)	$O(1)^{a}-Mn(2)-O(1)^{b}$	88.12(14)
$N(2)^{c}-Mn(1)-O(2)^{a}$	88.29(19)	$O(1)^{a}-Mn(2)-O(1)^{d}$	179.997(1)
$N(2)^{c}-Mn(1)-O(3)^{b}$	91.28(19)	$O(1)^{a}-Mn(2)-O(1)^{e}$	88.12(14)
$N(2)^{c}-Mn(1)-O(4)$	84.3(2)	$O(1)^{a}-Mn(2)-O(1)^{f}$	91.88(14)
$O(1)-Mn(1)-O(2)^{a}$	91.77(16)	$O(1)^{b}$ -Mn(2)-O(1)^{d}	91.88(14)
$O(1)-Mn(1)-O(3)^{b}$	85.94(16)	$O(1)^{b}$ -Mn(2)-O(1) ^e	91.88(14)
O(1)-Mn(1)-O(4)	98.54(18)	$O(1)^{b}$ -Mn(2)-O(1)^{f}	180.0
$O(2)^{a}-Mn(1)-O(3)^{b}$	104.5(2)	$O(1)^{d}$ -Mn(2)-O(1) ^e	91.88(14)
$O(2)^{a}-Mn(1)-O(4)$	83.4(2)	$O(1)^{d}$ -Mn(2)-O(1) ^f	88.12(14)
$O(3)^{b}-Mn(1)-O(4)$	170.91(18)	$O(1)^{e}-Mn(2)-O(1)^{f}$	88.12(14)
Symmetry codes: a - y + 1, x - y + 1, z; b x - y + 2/3, x + 1/3, - z + 1/3; c y - 1, - x +			
y, - z; d y - 1/3, - x + y + 1/3, - z + 1/3; e - x + 2/3, - y + 4/3, - z + 1/3; f - x + y, - x +			
1, z.			

Table S1. Selected bond lengths (Å) and angles (°) for 2.

Fig. S1 IR curves of 1 and 2.

Fig. S2 IR curves of 3 and 4.

Fig. S3 XRD patterns of 3 (a) simulated from single-crystal X-ray data, and experimental data for solids 3 (b) and 4 (c).

Fig. S4 Ball-stick view of the Cd7 hepta-nuclear unit in 1.

Fig. S5 TGA curves of 1-4.

Fig. S6 Room-temperature solid-state fluorescent intensity as a function of time for 1 with $\lambda_{em} = 430$ nm.

Fig. S7 Emission and excitation spectra for 1 at room temperature.

Fig. S8 Emission and excitation spectra for solid 1-200 at room temperature.

Fig. S9 Emission and excitation spectra for solid 1-250 at room temperature.

Fig. S10 The $\chi_m T$ versus *T* curve per Mn₇ unit in **2**.

Fig. S11 The $\chi_m T$ versus *T* curve per Co unit in **3**.

Fig. S12 The $\chi_m T$ versus *T* curve per Ni unit in 4.