Electronic Supplementary Information

A series of Zn(II) and Cd(II) coordination polymers based on flexible bis-[(pyridyl)-benzimidazole] ligand and different carboxylates: syntheses, structures, and photoluminescent properties

Hai-Yan Liu,^{*a,b*} Jian-Fang Ma,*^{*a*} Ying-Ying Liu^{*a*} and Jin Yang*^{*a*}

- ^a Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
- ^b Department of Chemical Engineering, Yingkou University Zone, Yingkou 115014, People's Republic of China

* Correspondence authors E-mail: jianfangma@yahoo.com.cn (J.-F. Ma) Fax: +86-431-85098620 (J.-F. Ma) E-mail: yangjinnenu@yahoo.com.cn (J. Yang)

1			
Zn(1)-O(1)	1.9089(18)	$Zn(1)-O(3)^{\#1}$	1.9364(19)
Zn(1)-N(1)	2.036(2)	$Zn(1)-N(3)^{\#2}$	2.093(2)
O(1)-Zn(1)-O(3) ^{#1}	105.65(9)	O(1)-Zn(1)-N(1)	122.60(9)
$O(3)^{\#1}$ -Zn(1)-N(1)	100.19(9)	$O(1)-Zn(1)-N(3)^{\#2}$	112.55(9)
$O(3)^{\#1}$ -Zn(1)-N(3) ^{#2}	117.04(9)	N(1)-Zn(1)-N(3) ^{#2}	98.93(9)
2			
Zn(1)-O(1)	1.927(2)	$Zn(1)-O(4)^{\#1}$	1.9316(19)
Zn(1)-N(1)	2.015(2)	$Zn(1)-N(3)^{\#2}$	2.086(3)
O(1)-Zn(1)-O(4) ^{#1}	103.58(9)	O(1)-Zn(1)-N(1)	126.16(9)
$O(4)^{\#1}$ -Zn(1)-N(1)	99.61(9)	$O(1)-Zn(1)-N(3)^{\#2}$	106.85(9)
$O(4)^{\#1}$ -Zn(1)-N(3) ^{#2}	119.09(10)	N(1)-Zn(1)-N(3) ^{#2}	102.79(10)
3			
$Zn(1)-O(5)^{\#1}$	1.940(3)	Zn(1)-O(1)	1.958(3)
Zn(1)-O(3)	1.982(3)	Zn(1)-N(1)	2.001(4)
Zn(2)-O(2)	2.035(3)	$Zn(2)-O(6)^{\#1}$	2.054(3)
Zn(2)-O(3)	2.193(3)		
$O(5)^{\#1}$ -Zn(1)-O(1)	111.97(15)	$O(5)^{\#1}$ -Zn(1)-O(3)	112.03(13)
O(1)-Zn(1)-O(3)	99.57(14)	$O(5)^{\#1}$ -Zn(1)-N(1)	109.09(16)
O(1)-Zn(1)-N(1)	102.95(15)	O(3)-Zn(1)-N(1)	120.38(15)
O(2)-Zn(2)-O(6) ^{#3}	84.78(13)	$O(2)$ -Zn(2)- $O(6)^{\#1}$	95.22(13)
O(2)-Zn(2)-O(3) ^{#2}	89.64(12)	$O(6)^{\#1}$ -Zn(2)-O(3) $^{\#2}$	89.84(12)
O(2)-Zn(2)-O(3)	90.36(12)	$O(6)^{\#1}$ -Zn(2)-O(3)	90.16(12)
4			
$Zn(1)-O(6)^{\#1}$	1.902(3)	$Zn(1)-O(2)^{\#2}$	1.932(3)
Zn(1)-O(1)	1.978(3)	Zn(1)-N(1)	2.040(3)
Zn(2)-O(3)	1.942(3)	$Zn(2)-O(3)^{\#3}$	1.942(3)
Zn(2)-O(1W)	2.021(5)	$Zn(2)-N(3)^{\#4}$	2.235(4)
$Zn(2)-N(3)^{\#5}$	2.235(4)		
$O(6)^{\#1}$ -Zn(1)-O(2) $^{\#2}$	128.26(17)	$O(6)^{\#1}$ -Zn(1)-O(1)	100.41(16)
$O(2)^{#2}$ -Zn(1)-O(1)	114.17(15)	$O(6)^{\#1}$ -Zn(1)-N(1)	104.90(15)
$O(2)^{#2}$ -Zn(1)-N(1)	100.13(13)	O(1)-Zn(1)-N(1)	107.42(15)
O(3)-Zn(2)-O(3) ^{#3}	154.9(2)	O(3)-Zn(2)-O(1W)	102.53(12)
$O(3)^{#3}$ -Zn(2)-O(1W)	102.53(12)	O(3)-Zn(2)-N(3) ^{#4}	87.53(16)
$O(3)^{\#3}$ -Zn(2)-N(3) ^{#4}	90.79(16)	O(1W)-Zn(2)-N(3) ^{#4}	93.88(11)
$O(3)-Zn(2)-N(3)^{\#5}$	90.79(16)	$O(3)^{#3}$ -Zn(2)-N(3) ^{#5}	87.53(16)

Table S1. Selected bond distances (Å) and angles (°) for compounds 1-8.

O(1W)-Zn(2)-N(3) ^{#5}	93.88(11)	$N(3)^{#4}$ -Zn(2)-N(3) ^{#5}	172.2(2)
5			
Cd(1)-N(1)	2.318(3)	Cd(1)-O(2)	2.341(3)
$Cd(1)-N(3)^{\#1}$	2.373(3)	$Cd(1)-O(4)^{\#2}$	2.393(3)
Cd(1)-O(1W)	2.439(3)	$Cd(1)-O(3)^{\#2}$	2.447(3)
Cd(1)-O(1)	2.568(3)		
N(1)-Cd(1)-O(2)	101.13(10)	$N(1)-Cd(1)-N(3)^{\#1}$	94.92(10)
$O(2)-Cd(1)-N(3)^{\#1}$	131.89(12)	$N(1)-Cd(1)-O(4)^{\#2}$	104.07(11)
$O(2)-Cd(1)-O(4)^{\#2}$	133.41(10)	$N(3)^{\#1}-Cd(1)-O(4)^{\#2}$	84.06(11)
N(1)-Cd(1)-O(1W)	171.42(13)	O(2)-Cd(1)-O(1W)	81.32(10)
$N(3)^{\#1}-Cd(1)-O(1W)$	77.56(11)	$O(4)^{#2}-Cd(1)-O(1W)$	79.49(12)
$N(1)-Cd(1)-O(3)^{\#2}$	101.09(10)	$O(2)-Cd(1)-O(3)^{\#2}$	83.77(10)
$N(3)^{\#1}$ -Cd(1)-O(3) $^{\#2}$	136.93(11)	$O(4)^{\#2}-Cd(1)-O(3)^{\#2}$	53.39(9)
O(1W)-Cd(1)-O(3) ^{#2}	87.31(11)		
6			
Cd(1)-O(1)	2.209(3)	$Cd(1)-O(3)^{\#1}$	2.329(4)
Cd(1)-N(1)	2.334(4)	$Cd(1)-N(2)^{\#2}$	2.349(4)
$Cd(1)-O(4)^{\#1}$	2.486(4)	$Cd(1)-O(3)^{\#3}$	2.586(4)
$O(1)-Cd(1)-O(3)^{\#1}$	120.27(13)	O(1)-Cd(1)-N(1)	136.38(13)
$O(3)^{\#1}-Cd(1)-N(1)$	91.71(13)	$O(1)-Cd(1)-N(2)^{\#2}$	110.20(13)
$O(3)^{\#1}-Cd(1)-N(2)^{\#2}$	102.90(13)	$N(1)-Cd(1)-N(2)^{\#2}$	87.85(13)
$O(1)-Cd(1)-O(4)^{\#1}$	80.93(13)	$O(3)^{\#1}-Cd(1)-O(4)^{\#1}$	53.91(12)
$N(1)-Cd(1)-O(4)^{\#1}$	141.69(12)	$N(2)^{\#2}-Cd(1)-O(4)^{\#1}$	84.77(14)
$O(1)-Cd(1)-O(3)^{\#3}$	74.55(13)	$O(3)^{\#1}-Cd(1)-O(3)^{\#3}$	81.55(12)
$N(1)-Cd(1)-O(3)^{\#3}$	82.70(12)	$N(2)^{\#2}-Cd(1)-O(3)^{\#3}$	169.70(12)
$O(4)^{\#1}-Cd(1)-O(3)^{\#3}$	105.21(12)		
7			
Cd(1)-O(2)	2.217(2)	$Cd(1)-O(3)^{\#1}$	2.290(2)
Cd(1)-N(1)	2.340(2)	$Cd(1)-N(2)^{\#2}$	2.444(2)
$Cd(1)-O(4)^{\#1}$	2.463(2)	$Cd(1)-O(1)^{\#3}$	2.465(2)
$O(2)-Cd(1)-O(3)^{\#1}$	96.31(9)	O(2)-Cd(1)-N(1)	124.17(9)
$O(3)^{\#1}-Cd(1)-N(1)$	138.90(9)	$O(2)-Cd(1)-N(2)^{\#2}$	89.28(9)
$O(3)^{\#1}-Cd(1)-N(2)^{\#2}$	96.35(9)	$N(1)-Cd(1)-N(2)^{\#2}$	91.41(8)
$O(2)-Cd(1)-O(4)^{\#1}$	150.15(8)	$O(3)^{\#1}-Cd(1)-O(4)^{\#1}$	54.71(8)
$N(1)-Cd(1)-O(4)^{\#1}$	85.58(8)	$N(2)^{\#2}-Cd(1)-O(4)^{\#1}$	87.38(9)
$O(2)-Cd(1)-O(1)^{\#3}$	90.84(8)	$O(3)^{\#1}-Cd(1)-O(1)^{\#3}$	81.22(8)
$N(1)-Cd(1)-O(1)^{\#3}$	90.53(8)	$N(2)^{\#2}-Cd(1)-O(1)^{\#3}$	177.56(8)

$O(4)^{\#1}-Cd(1)-O(1)^{\#3}$	91.30(8)		
8			
Cd(1)-O(1)	2.207(7)	Cd(1)-N(1)	2.283(9)
$Cd(1)-N(3)^{\#1}$	2.335(7)	$Cd(1)-O(3)^{\#2}$	2.377(8)
$Cd(1)-O(4')^{\#2}$	2.388(18)	$Cd(1)-O(4)^{\#2}$	2.399(16)
Cd(1)-O(1')	2.45(3)	Cd(1)-O(3') ^{#2}	2.45(3)
Cd(1)-O(2)	2.460(7)	Cd(1)-O(2')	2.46(4)
O(1)-Cd(1)-N(1)	136.4(4)	$O(1)-Cd(1)-N(3)^{\#1}$	97.7(4)
$N(1)-Cd(1)-N(3)^{\#1}$	104.6(2)	$O(1)-Cd(1)-O(3)^{\#2}$	96.3(4)
$N(1)-Cd(1)-O(3)^{\#2}$	93.9(3)	$N(3)^{\#1}$ -Cd(1)-O(3) $^{\#2}$	134.8(4)
$O(1)-Cd(1)-O(4')^{\#2}$	93.5(6)	N(1)-Cd(1)-O(4') ^{#2}	124.3(5)
$N(3)^{\#1}-Cd(1)-O(4')^{\#2}$	86.8(5)	$O(3)^{#2}$ -Cd(1)-O(4') ^{#2}	49.5(6)
$O(1)-Cd(1)-O(4)^{\#2}$	112.3(5)	$N(1)-Cd(1)-O(4)^{\#2}$	107.6(5)
$N(3)^{\#1}-Cd(1)-O(4)^{\#2}$	82.2(5)	$O(3)^{#2}-Cd(1)-O(4)^{#2}$	52.7(5)
$O(4')^{#2}-Cd(1)-O(4)^{#2}$	18.9(5)	N(1)-Cd(1)-O(1')	106.9(7)
N(3) ^{#1} -Cd(1)-O(1')	123.9(7)	O(3) ^{#2} -Cd(1)-O(1')	87.7(7)
O(4) ^{#2} -Cd(1)-O(1')	128.2(8)	O(1)-Cd(1)-O(3') ^{#2}	120.1(8)
$N(1)-Cd(1)-O(3')^{#2}$	80.1(7)	$N(3)^{\#1}$ -Cd(1)-O(3') $^{\#2}$	119.4(7)
$O(3)^{#2}-Cd(1)-O(3')^{#2}$	24.5(7)	$O(4')^{#2}-Cd(1)-O(3')^{#2}$	48.8(4)
$O(4)^{#2}-Cd(1)-O(3')^{#2}$	41.7(8)	$O(1')-Cd(1)-O(3')^{\#2}$	111.0(10)
O(1)-Cd(1)-O(2)	51.7(3)	N(1)-Cd(1)-O(2)	92.1(4)
$N(3)^{\#1}$ -Cd(1)-O(2)	87.3(4)	O(3) ^{#2} -Cd(1)-O(2)	133.6(5)
$O(4')^{#2}-Cd(1)-O(2)$	143.4(6)	$O(4)^{#2}$ -Cd(1)-O(2)	159.5(6)
O(1')-Cd(1)-O(2)	46.8(7)	O(3') ^{#2} -Cd(1)-O(2)	153.3(8)
O(1)-Cd(1)-O(2')	41.1(15)	N(1)-Cd(1)-O(2')	110.9(13)
N(3) ^{#1} -Cd(1)-O(2')	74.3(11)	O(3) ^{#2} -Cd(1)-O(2')	136.2(14)
O(4') ^{#2} -Cd(1)-O(2')	124.5(13)	O(4) ^{#2} -Cd(1)-O(2')	138.7(11)
O(1')-Cd(1)-O(2')	51.4(14)	O(3') ^{#2} -Cd(1)-O(2')	160.7(17)

Symmetry codes for 1: ^{#1} x+1/2, -y+1/2, z+1/2; ^{#2} -x+1, -y, -z+1. For 2: ^{#1} x, -y+1/2, z-1/2; ^{#2} -x+1, -y, -z. For 3: ^{#1} x, -y-1/2, z+1/2; ^{#2} -x+1, -y, -z+2; ^{#3} -x+1, y+1/2, -z+3/2. For 4: ^{#1} -x, y, -z+1/2; ^{#2} -x, -y+1, -z; ^{#3} -x+1/2, -y+2, z; ^{#4} -x, y+1, -z+1/2; ^{#5} x+1/2, -y+1, -z+1/2. For 5: ^{#1} -x+1, -y+1, -z+1; ^{#2} -x+1, -y+1, -z. For 6: ^{#1} x, y+1, z; ^{#2} -x+1, -y+1, -z+2; ^{#3} -x+2, -y, -z+2. For 7: ^{#1} -x, y+1/2, -z+1/2; ^{#2} -x+1, -y, -z; ^{#3} -x, -y, -z. For 8: ^{#1} -x+1/2, -y+1/2, -z; ^{#2} -x+3/2.

Table S2. Hydrogen-bonding parameters for 2-5 (in Å and deg)					
	D-H···A	d(D-H)	$d(D \cdots A)$	\angle (D-H···A)	

a 1 2 a #3	1/2 1/2 7	- #2 - 1			
O(1W)-H(1A)O(3)	0.863(19)	1.95(3)	2.706(5)	146(5)	
$O(1W)-H(1B)O(2)^{\#2}$	0.860(19)	2.16(4)	2.844(5)	136(5)	
5					
O(1W)-H(1A)O(2W)	0.869(10)	2.12(4)	2.703(7)	124(4)	
4					
O(2W)-H(2A)O(1W)	0.86(2)	2.59(4)	2.916(13)	104(3)	
O(1W)-H(1A)O(2W)	0.762(18)	2.26(3)	2.916(13)	145(3)	
3					
$N(4)-H(4B)O(2)^{\#3}$	0.844(10)	2.004(16)	2.776(3)	152(2)	
2					

Symmetry codes for **2:**^{#3} -x, y+1/2, -z+1/2. For **5**:^{#2} -x+1, -y+1, -z.

Fig. S1 The simulated (green) and experimental (red) XRPD patterns for the compounds **1-8** (the diffraction peaks of both simulated and experimental patterns match well in relevant positions, indicating that the phase purities of compounds **1-8** are good).

Fig. S2. View of the 3- and 4-connected nodes of 4.

Fig. S3. View of the 3- and 4-connected nodes of 6.

Fig. S4. View of the 3- and 5-connected nodes of 7.

Fig. S5. View of the 3- and 4-connected nodes of 8.

Fig. S6. TGA curves of compounds 1-8.

(b)

Fig. S7. (a) Solid-state emission spectra of free *o*-H₂bdc, *m*-H₂bdc, *p*-H₂bdc, H₄btec ligands at room temperature. (b) The excitation and emission spectra of L ligand at room temperature.