The videos of the XRD scan and photocurrent spectrums of sample A and B can be found at following website:

 $\theta$ -2 $\theta$  scan of sample A:

http://s1265.beta.photobucket.com/user/zqhero/media/sampleA2thetaomega\_zps4d309da5.mp 4.html

phi-scan of sample A

http://s1265.beta.photobucket.com/user/zqhero/media/sampleAphiscan\_zpsd363b667.mp4.ht ml

 $\theta$ -2 $\theta$  scan of sample B

http://s1265.beta.photobucket.com/user/zqhero/media/sampleB-2thetaomega\_zps6ca68a81.m p4.html

phi-scan of sample B:

http://s1265.beta.photobucket.com/user/zqhero/media/sampleBphiscan\_zps46c0aea1.mp4.ht

ml

 $\theta$ -2 $\theta$  scan of sample C:

http://s1265.beta.photobucket.com/user/zqhero/media/sampleC2thetaomega\_zps542f8aca.mp 4.html

Photocurrent spectrum of sample A under 10V:

http://s1265.beta.photobucket.com/user/zqhero/media/photocurrentofsampleAunder10V223\_zps5 6a96abd.mp4.html

Photocurrent spectrum of sample B under 3V:

http://s1265.beta.photobucket.com/user/zqhero/media/photocurrentofsampleBunder3V\_zps65eafb 1c.mp4.html

Fig.1 shows the SEM image of  $Mg_{0.50}Zn_{0.50}O$  grown on on various substrates. As can be seem,  $Mg_{0.50}Zn_{0.50}O$  film grown on MgO substrate has a much flatter surface with regular morphology.  $Mg_{0.50}Zn_{0.50}O$  film grown on sapphire substrate has worm-shape un-regular morphology. Due to the phase separation, surface of  $Mg_{0.50}Zn_{0.50}O$  film grown on quartz substrate consists of two kinds of morphologies. These are consistent with the results of AFM and the XRD measurements.





Fig.1 SEM images of  $Mg_{0.50}Zn_{0.50}O$  grown on on various substrates, (a) on MgO, (b) on sapphire and (c) on quartz substrates.