Supplementary Material

Self-assembly, concomitant photochemical processes, and improvement of the yield of [2+2] photoreactions from supramolecular arrays via mechanochemical assistance.

Alexander Briceño,^a* Dayana Leal,^{a,b} Gabriela Ortega,^a Graciela Diaz de Delgado,^b Edgar Ocando^a and Liz Cubillan ^a

^a Instituto Venezolano de Investigaciones Científicas, (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela. Laboratorio de Síntesis y Caracterización de Nuevos Materiales, Centro de Química. ^b Universidad de Los Andes (ULA), Facultad de Ciencias, Departamento de Química, Laboratorio de Cristalografía, Apartado 40, La Hechicera, Mérida 5251, Venezuela.

1. Experimental Section

2. References

3. List of Figures

Figure S1. (a) Powder XRD patterns from a ground mixture of 2Cl-Stb, H_2Mal and H_2Fu for 45 min (blue) and simulated from single crystal structure of **1** (red). (b) PXRD patterns from a ground mixture of 2,2'-bpe and H_2Fu for 45 min (blue) and simulated from single crystal structure of **2** (red).

Figure 2. Monitoring of the isomerisation of H_2Mal to H_2Fu in presence of 2Cl-Stb by ¹H NMR spectroscopy as a function of time and the solvent; ¹H NMR spectra in DMSO-D₆ (a) and MeOD (b) at room temperature, respectively.

Figure S3. (a) ¹H NMR spectra of compound **1** before (bottom) and after UV-irradiation for 3 days at 350 nm (b) and 302 nm (c), respectively. (b) ¹H NMR spectrum of the photoproduct isolated from the irradiation of **1**, containing *rctt*-1,3-bis(4-pyridyl)-2,4-bis(2-chlorophenyl)cyclobutane (2-Cl-dpcb).

Figure S4. (a) Comparison of the ¹H NMR spectra of the mixture of 2,2'-tpcb and H₄Cbtc obtained from the photoreaction of compound **2** after irradiation for 3 days and the mixture after a second grinding-irradiation step (additional UV-irradiation for 2 days). (b) ¹H NMR spectrum of the mixture

of **2** after UV-irradiation for 5 days and co-ground with 40% of fresh 2,2'-bpe for 30 min and a third exposure to UV-irradiation for 2 days.

Figure S5. (a) Comparison of the ¹H NMR spectra of compound **3** after UV irradiation for 3 days at 302 nm and the mixture after a second grinding-irradiation step (additional UV-irradiation for 2 days). (b) Representative ¹H NMR spectrum of the photoproduct isolated from the irradiation of **2** and **3**, containing *rctt*-tetrakis(2-pyridyl)cyclobutane (2,2'-tpcb).

Figure S6. Comparison of the ¹H NMR spectra of compound **4** after UV irradiation for 3 days at 302 nm and the mixture after a second grinding-irradiation step (additional irradiation for 2 days). *Trans* 3-(3-pyridyl)acrylic acid (3HPA) and *rctt*-3,4-bis(3-pyridyl)-cyclobutane-1,2-dicarboxylic acid *head to head* (3-bpcd).,

1. Experimental Section

All reagents were obtained from commercial sources and used without further purification. The elemental analysis (C, H, N) was performed on a model EA1108 Fisons elemental analyzer. The FT-IR spectra were recorded from KBr discs, using a Nicolet Magna-IR 560 spectrophotometer. XRPD patterns were recorded on a Bruker D8 Diffractometer with Cu(K α) (1.5418 Å) radiation, with a scan speed of 2 deg/min. The ¹H NMR spectra were recorded on a Bruker AVANCE-300 Spectrometer in DMSO-D₆ or MeOD.

Preparation of (1). A solution of *trans*-2'-chloro-4-stilbazole (**2Cl-Stb**) (200 mg, 1 mmol) in 20 mL of methanol was added to 25 mL of a solution of maleic acid (H_2Mal) (128 mg, 1 mmol) and allowed to stir for 15 min. Slow evaporation of the resulting solutions at room temperature gave crystals of good quality for X-ray single crystal analysis. Yield based on 2Cl-Stb: 85% (pale yellow prisms). The XRD pattern showed that **1** can also be obtained as a highly pure single-phase by direct liquid-assisted co-grinding of the starting compounds for a period of 45-60 min (Fig 1(a)). IR (cm⁻¹): ν (N-H, O-H): 3200, ν (O-H)_{acid}: 3000-2000 (C=O)_{acid}: 1706, ν (COO⁻): 1624 ν (C=C, C=N,): 1600-1485, ν (COO): 1456-1360, ν (=C–H): 996.

Preparation of (2). A solution of 2,2'-bpe (200 mg, 1 mmol) in 20 mL of methanol was added to 25 mL of a solution of fumaric acid (H_2Fu) (287 mg, 2 mmol) and allowed to stir for 15 min. Slow evaporation of the resulting solution at room temperature gave crystals of good quality for X-ray single crystal analysis. Yield based on 2,2'-bpe: 75% (pale yellow prisms). The XRD pattern showed that 2 can be also obtained as a highly pure single-phase via liquid-assisted grinding for a period of 45-60 min (Fig 1(b)). IR (cm⁻¹): ν (O–H): 3600-2900, ν (C=O)_{acid}: 1700, ν (COO⁻): 1609-1568, ν (C=C, C=N)_{2,2'-bpe}: 1600-1476, ν (COO⁻): 1456-1330, ν (O–H): 1245, ν (=C–H): 979.

Preparation of (3). Compound **3** was prepared according to previously published procedure^{5a} and can also be obtained as a highly pure single-phase by direct liquid-assisted co-grinding of the starting compounds for a period of 45-60 min (See PXRD pattern, Fig S4 and S5). IR (cm⁻¹): ν (O-H): 3600-2900, ν (C=O): 1700, ν (C=C)_{acid}: 1645, ν (C=C, C=N)_{2,2'-bpe}: 1600-1476, ν (C-O): 1244, ν (=C-H): 985.

Solid state reactivity.

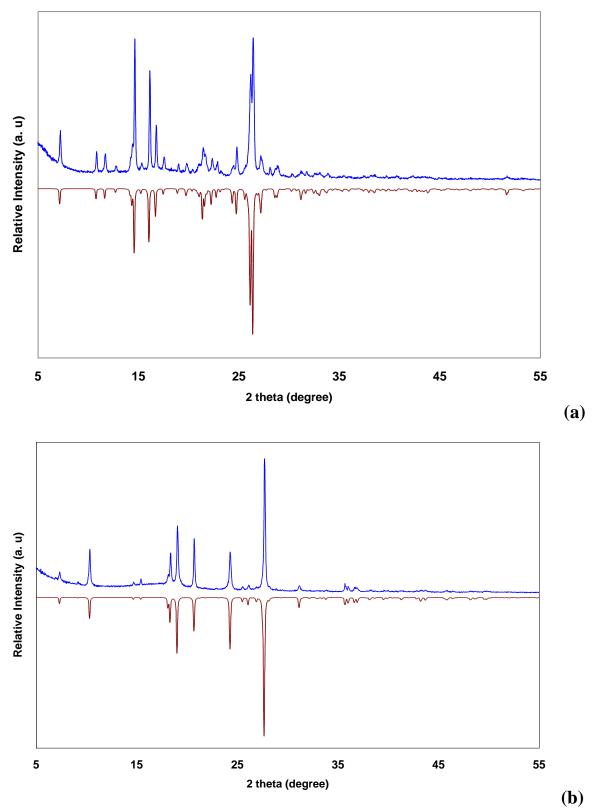
The reactivity of compounds 1-4 was studied upon irradiation with UV light. A powdered crystalline sample (100 mg) and crystals of 1-4 were irradiated at different wavelengths (302 and 356 nm) during 3-5 days. The irradiated samples were characterised by ¹H NMR spectroscopy for monitoring the respective topochemical transformations. These compounds were isolated from an extraction with CH_2Cl_2 after the neutralization of the acid component with NaOH in either case.

rctt-1,3-bis(4-pyridyl)-2,4-bis(2-chlorophenyl)cyclobutane (2-Cl-dpcb).

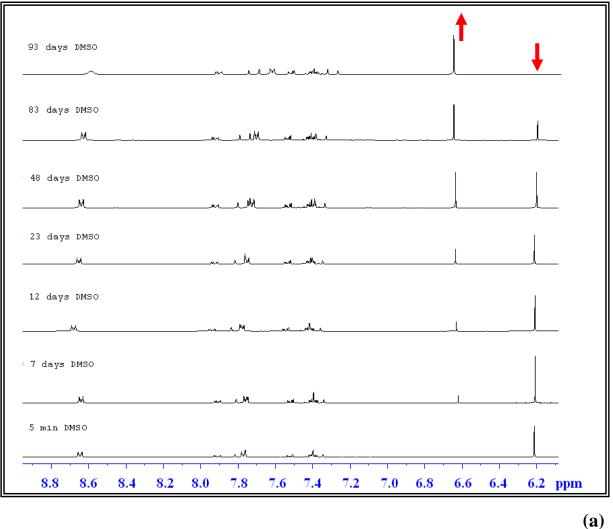
¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}(\rm ppm)$, *J* (Hz): 8.33(H_a, d, $J_{\rm ab} = 4.5$, $J_{\rm ab'} = 1.6$), 7.31(H_c, dd, $J_{\rm cd} = 7.7$, $J_{\rm ce} = 1.6$), 7.22(H_f, dd; $J_{\rm fe} = 8.3$, $J_{\rm fd} = 2.5$), 7.16(H_e, ddd, $J_{\rm ef} = 7.6$, $J_{\rm ed} = 7.5$, $J_{\rm ec} = 1.5$), 7.07(H_d, ddd, $J_{\rm dc} = 9.93$, $J_{\rm ed} = 6.80$, $J_{\rm df} = 2.91$), 4.79(H_g, m, $J_{gh'} = 8.5$, $J_{\rm gh} = 2.0$), and 4.57(H_h, m, $J_{\rm hg'} = 8.5$, $J_{\rm hg} = 2.5$).

rctt-tetrakis(2-pyridyl)cyclobutane isomer (2,2'-tpcb)

¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}$ (ppm), *J* (Hz): 8.42(H_a, ddd, $J_{\rm ab}$ = 4.8, $J_{\rm ac}$ = 1.0), 7.36(H_b, td; $J_{\rm bc}$ =7.7, $J_{\rm bd}$ = 1.84), 6.9(H_c, ddd; $J_{\rm cd}$ =7.8) 7.07(H_d, dd), and 5.13(H_e, s).


rctt-3,4-bis(3-Pyridyl)-1,2-bis(carboxylic)cyclobutane. ¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}(\rm ppm)$, *J*(Hz): 8.24(H_c, d, *J*_{cf} =14.7), 7.46(H_a, m, *J*_{ab}=7.8, *J*_{ab}=1.6), 7.10(H_b, m; *J*_{ab}=4.6), 4.31(H_c, m, *J*_{cd} = 6.3) and 3.90(H_d, m, *J*_{dc} = 6.1).

Crystal structure determination. Intensity data were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a CCD bidimensional detector using monochromated Mo(K α) radiation ($\lambda = 0.71073$ Å). An empirical absorption correction (multi-scan) was applied using the package CrystalClear.¹³ The structures were solved by Direct Methods and refined by full-matrix least-squares on F^2 using the SHELXTL-PLUS package.¹⁴ Hydrogen atoms on the carbon atoms were placed at fixed positions using the HFIX instruction. H-atoms on carboxylic groups were found from the Difference Fourier map. They were refined with isotropic displacement parameters set to $1.2 \times U$ eq of the attached atom.


2. References

- 13. CrystalClear, 2005. Rigaku Corporation, Tokyo, Japan.
- 14. Sheldrick, G. M, Acta Cryst. 2008, A64, 112.

Figure S1. (a) Powder XRD patterns from a ground mixture of 2Cl-Stb, H_2Mal and H_2Fu for 45 min (blue) and simulated from single crystal structure of **1** (red). (b) PXRD patterns from a ground mixture of 2,2'-bpe and H_2Fu for 45 min (blue) and simulated from single crystal structure of **2** (red).

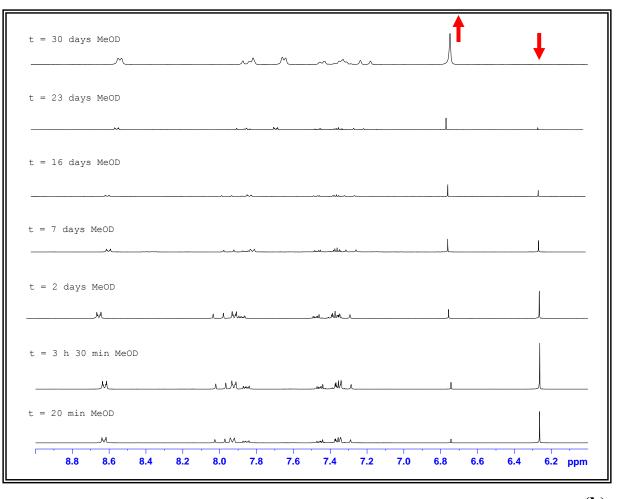
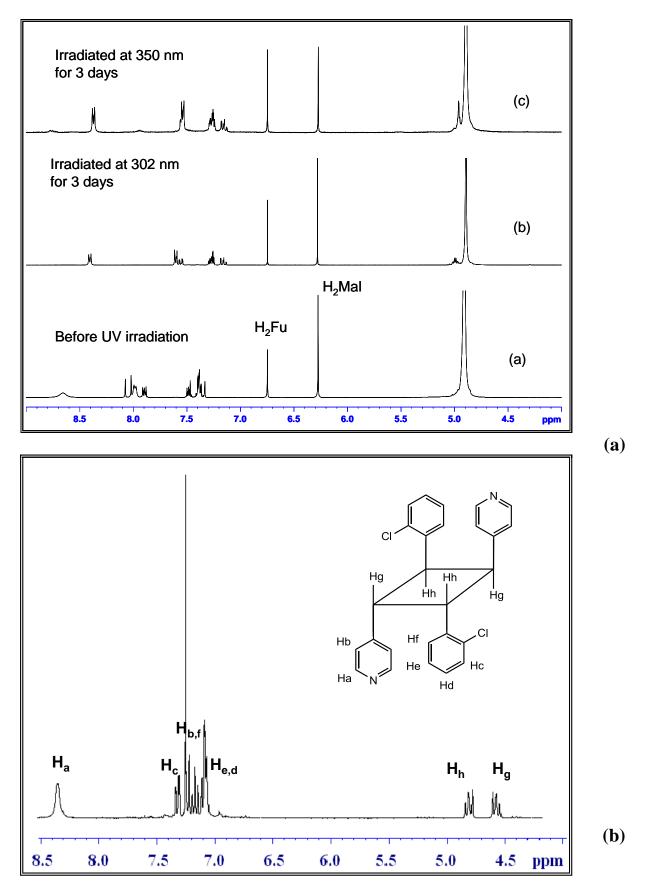


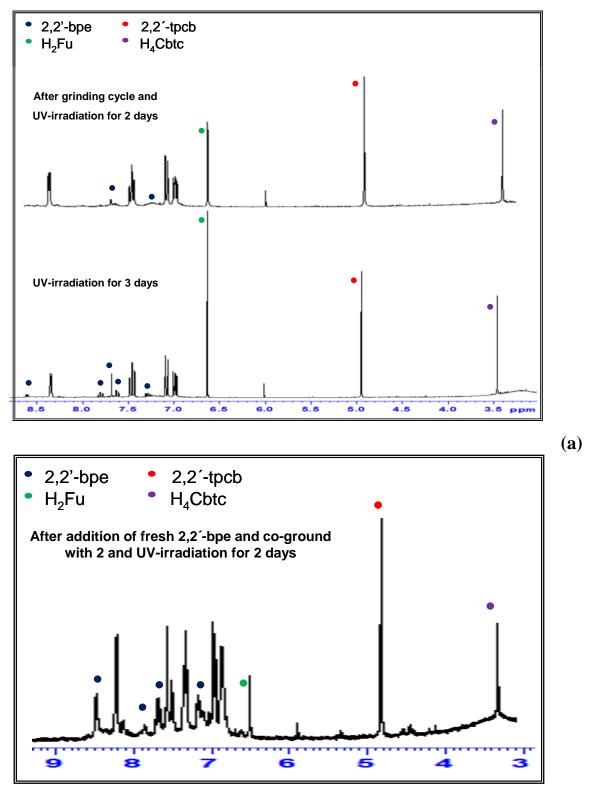
Figure 2. Monitoring of the isomerisation of H_2Mal to H_2Fu in presence of 2Cl-Stb by ¹H NMR spectroscopy as a function of time and the solvent; ¹H NMR spectra in DMSO-D₆ (a) and MeOD (b) at room temperature, respectively.

Table 1. Values of the degree *cis-trans* isomerisation of H_2Mal into H_2Fu estimated by 1H-NMR spectroscopy as a function of time in DMSO-D₆

Time (days)	H ₂ Mal (%)	H_2Fu (%)
0	100	0
7	88.75	11.24
12	78.68	21.32
23	72.89	27.10
48	51.57	48.42
83	36.43	63.53
93	0	100



(b)


Table 2. Degree of *cis-trans* isomerisation of H_2Mal to H_2Fu estimated by ¹H-NMR spectroscopy as a function of time in MeOD

Time (days)	H ₂ Mal (%)	H ₂ Fu (%)
0.014	92.00	8.00
0.15	89.56	10.43
2	74.89	25.11
7	53.94	46.05
16	33.76	66.23
23	13.45	86.55
30	0	100

Figure S3. (a) ¹H NMR spectra of compound **1** before (bottom) and after UV-irradiation for 3 days at 350 nm (b) and 302 nm (c), respectively. (b) ¹H NMR spectrum of the photoproduct isolated from the irradiation of **1**, containing *rctt*-1,3-bis(4-pyridyl)-2,4-bis(2-chlorophenyl)cyclobutane (2-Cl-dpcb).

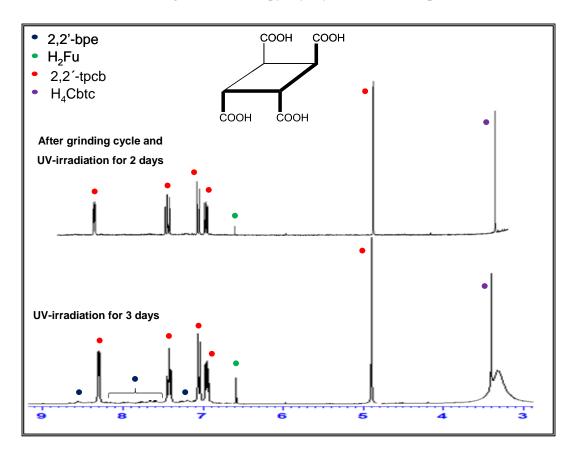
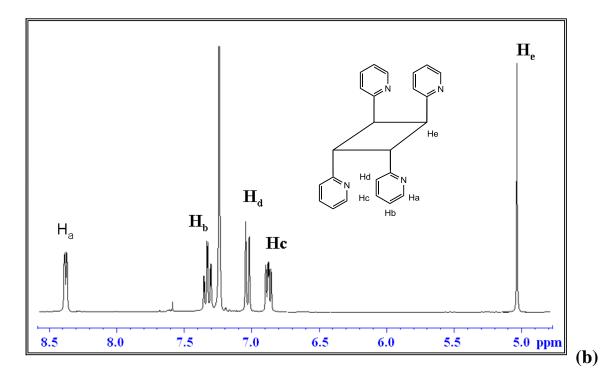
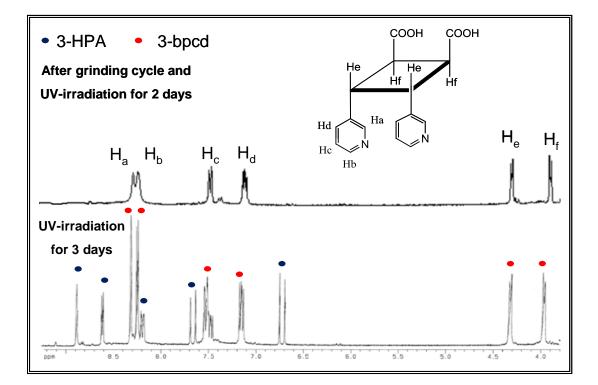


Figure S4. (a) Comparison of the ¹H NMR spectra of the mixture of 2,2'-tpcb and H₄Cbtc obtained from the photoreaction of compound **2** after irradiation for 3 days and the mixture after a second grinding-irradiation step (additional UV-irradiation for 2 days). (b) ¹H NMR spectrum of the mixture of **2** after UV-irradiation for 5 days and co-ground with 40% fresh 2,2'-bpe for 30 min and a third exposure to UV-irradiation for 2 days.



(b)


Figure S5. (a) Comparison of the ¹H NMR spectra of compound **3** after UV irradiation for 3 days at 302 nm and the mixture after a second grinding-irradiation step (additional UV-irradiation for 2 days). (b) Representative ¹H NMR spectrum of the photoproduct isolated from the irradiation of **2** and **3**, containing *rctt*-tetrakis(2-pyridyl)cyclobutane (2,2'-tpcb).

(a)

Figure S6. Comparison of the ¹H NMR spectra of compound **4** after UV irradiation for 3 days at 302 nm and the mixture after a second grinding-irradiation step (additional irradiation for 2 days). *Trans* 3-(3-pyridyl)acrylic acid (3HPA) and *rctt*-3,4-bis(3-pyridyl)-cyclobutane-1,2-dicarboxylic acid (3-bpcd).

