Supporting Information

One-step Fabrication of High Performance Tremella-like Fe₃S₄/C Magnetic Adsorbent with Easy Recovery and Regeneration Properties

Xianbiao Wang^{1,2}, Weiping Cai^{1*}, Guozhong Wang¹, Zhikun Wu¹ and Huijun Zhao^{3*}

¹Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China

²Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui University of Architecture, Hefei 230601, P.R. China

³Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia

TG and XPS measurements

TG measurement was performed for the Fe₃S₄/C composite with heating rate 5 °C/min and nitrogen flow 25 ml/min, as shown in Fig.S1. The weight loss before 160° C is ascribed to the adsorbed water in the sample. In the temperature range from 160° C-500 °C, the weight loss is mainly attributed to decomposition and further carbonization of the carbonaceous materials in the sample, which release CO, CO₂ and H₂O gases, etc.,[S1, S2]. Meanwhile, the Fe₃S₄ is decomposed to FeS₂ [S3], due to the surface-adsorbed oxygen [O], or the reaction

$$3Fe_3S_4 \xrightarrow{[O]} 6FeS_2 + Fe_3O_4 \tag{S1}$$

would take place. When the temperature is above 500 $^{\circ}$ C, the FeS₂ is further transformed to Fe_{1-x}S and sulphur [S3], or

$$(1-x)FeS_2 \longrightarrow Fe_{1-x}S + (1-2x)S \tag{S2}$$

resulting in a rapid weight loss in the range from 500 °C to 560 °C owing to evaporation of

^{*} To whom all correspondence should be addressed E-mail: <u>wpcai@issp.ac.cn</u>; <u>h.zhao@griffith.edu.au</u>

sulphur. The final slight weight loss stage occurs from 560 $^{\circ}$ C due to the continuing carbonization of carbonaceous materials.

XPS measurements were conducted for the Fe₃S₄/C composite. The binding energy spectrum of O1s is illustrated in Fig. S2. The peaks at 533.03, 531.37 and 529.71 eV correspond to C-O, C=O and –OH groups, respectively [S4], indicating the existence of functional groups at surface of Fe₃S₄/C composites. Also, the binding energy spectrum of C1s is shown in Fig. S3. The peaks at 284.2 eV, 285.0 eV, 286.0 eV, 287.3 eV and 288.5 eV correspond to C=C, C-C/C-H, C-O, C=O and O-C=O groups, respectively [S4]. Obviously, the C1s signal in Fig.S3 indicates that the hydrophobic groups(C-H, C=C, C-C) account for a decent proportion in total carbon containing groups on the adsorbent's surface.

Both measurements have further confirmed existence of functional groups (C-O, C=O and -OH) at surface of Fe₃S₄/C composites.

References

[S1] C. E. Byrne and D. C. Nagle, *Carbon*, 1997, **35**, 259-266.

- [S2] I.C. Lewis, Carbon, 1982, 20, 519-529
- [S3] M. J. Dekkers, H. F. Passier and M. A. A. Schoonen, *Geophys. J. Int.*, 2000, 141, 809-819.
- [S4] C.G Chen, B. Liang, Di Lu, A. Ogino, X. K. Wang and M. Nagatsu, *Carbon*, 2010, 48, 939 -948.

Fig.S1 Xianbiao Wang et al

Fig. S1 TG curve of Fe₃S₄/C composite with heating rate 5 °C/min and nitrogen flow 25ml/min.

Fig.S2 Xianbiao Wang et al

Fig. S2 The binding energy spectrum of O1s in the Fe_3S_4/C composite.

Fig.S3 Xianbiao Wang et al

Fig. S3. The binding energy spectrum of C1s in the Fe_3S_4/C composite.

Fig.S4 Xianbiao Wang et al

Fig. S4 A magnified area cut from Fig.4(d) in the manuscript (with different contrasts in different areas)

Fig.S5 Xianbiao Wang et al

Fig. S5 The schematic atomic structure of the crystal plane (111) (View along [111]).

Fig.S6 Xianbiao Wang et al

Figure S6. The FESEM images of the as-prepared products after solvothermal reaction for (a) 1 h and (b) 4h.

Fig.S7 Xianbiao Wang et al

Fig. S7 FESEM image (a) and XRD (b) of the Fe₃S₄/C composites after MB adsorption. (Note: The adsorption experiment was conducted using 10 mg Fe₃S₄/C composites in the 5 ml solution with MB 10mg/L for 10min. After separation from the solution, the composites were washed with deionized water and dried before FESEM and XRD characterization)