Electronic Supplementary Information

For

Metal complex analogues of crown ethers as the preorganized motif to stabilize aquated proton in solid state

Arpita Jana, Thomas Weyhermueller and Sasankasekhar Mohanta*

(b) **Fig. S1.** Powder XRD pattern of $[{Cu^{II}L^{hex}}_2(H_5O_2)](ClO_4)$ (2): (a) Observed; (b) Simulated (using MERCURY Program) on the basis of single crystal diffraction data.

Fig. S2. Powder XRD pattern of $[{Cu^{II}L^{en}}_2(H_5O_2)](ClO_4)$ (3): (a) Observed; (b) Simulated (using MERCURY Program) on the basis of single crystal diffraction data.

Bond lengths			Bond angles		
	1	2		1	2
Cu(1)–O(1)	1.914(2)	1.924(3)	N(1)-Cu(1)-O(2)	177.78(10)	172.86(16)
Cu(1)-O(2)	1.920(2)	1.910(3)	N(2)-Cu(1)-O(1)	177.50(10)	174.74(16)
Cu(1)-N(1)	1.949(3)	1.936(4)	N(1)-Cu(1)-N(2)	84.19(11)	84.11(18)
Cu(1)-N(2)	1.946(3)	1.934(4)	N(1)-Cu(1)-O(1)	93.32(11)	93.73(17)
			N(2)-Cu(1)-O(2)	93.60(10)	92.84(16)
			O(1)-Cu(1)-O(2)	88.90(9)	89.84(14)
Cu(2) - O(5)	1.898(2)	1.893(3)	N(3)-Cu(2)-O(6)	175.39(11)	171.50(15)
Cu(2)–O(6)	1.902(2)	1.889(3)	N(4)-Cu(2)-O(5)	173.19(11)	168.73(16)
Cu(2) - N(3)	1.937(3)	1.913(4)	N(3)-Cu(2)-N(4)	84.16(11)	84.47(17)
Cu(2) - N(4)	1.946(3)	1.935(4)	N(3)-Cu(2)-O(5)	94.04(10)	93.53(15)
			N(4)–Cu(2)–O(6)	93.60(10)	93.55(15)
			O(5)–Cu(2)–O(6)	88.65(9)	89.99(13)

 $\begin{tabular}{ll} Table S1 \\ Bond lengths (Å) and bond angles (°) for the copper(II) centres of 1 and 2 \end{tabular}$

Unit-1		Unit-II		
Cu(1)-O(1)	1.914(2)	Cu(3) - O(9)	1.920(2)	
Cu(1)–O(2)	1.941(2)	Cu(3)–O(10)	1.931(2)	
Cu(1) - N(1)	1.947(3)	Cu(3) - N(5)	1.940(3)	
Cu(1)-N(2)	1.931(3)	Cu(3) - N(6)	1.937(3)	
Cu(2)–O(5)	1.924(2)	Cu(4)–O(13)	1.934(2)	
Cu(2)–O(6)	1.902(2)	Cu(4)–O(14)	1.903(2)	
Cu(2) - N(3)	1.930(3)	Cu(4) - N(7)	1.933(3)	
Cu(2) - N(4)	1.938(3)	Cu(4) - N(8)	1.941(3)	
N(1)-Cu(1)-O(2)	175.41(11)	N(5)–Cu(3)–O(10)	174.83(11)	
N(2)-Cu(1)-O(1)	176.44(11)	N(6)–Cu(3)–O(9)	176.65(11)	
N(1)-Cu(1)-N(2)	84.00(12)	N(5)-Cu(3)-N(6)	84.17(12)	
N(1)-Cu(1)-O(1)	92.48(11)	N(5)–Cu(3)–O(9)	92.49(11)	
N(2)-Cu(1)-O(2)	92.44(11)	N(6)–Cu(3)–O(10)	92.14(11)	
O(1)-Cu(1)-O(2)	91.10(9)	O(9)–Cu(3)–O(10)	91.20(9)	
N(3)–Cu(2)–O(6)	176.95(12)	N(7)–Cu(4)–O(14)	177.01(13)	
N(4)-Cu(2)-O(5)	173.75(12)	N(8)–Cu(4)–O(13)	172.94(12)	
N(3)-Cu(2)-N(4)	84.69(13)	N(7)–Cu(4)–N(8)	84.19(15)	
N(3)–Cu(2)–O(5)	92.06(11)	N(7)–Cu(4)–O(13)	92.21(13)	
N(4)-Cu(2)-O(6)	92.95(12)	N(8)–Cu(4)–O(14)	92.91(13)	
O(5)–Cu(2)–O(6)	90.46(10)	O(13)–Cu(4)–O(14)	90.75(10)	

Table S3

The O–H distances (Å) in $H_5O_2^+$ moiety involving the central hydrogen atom in 1–3

	1	2	3, Unit-I	3, Unit-II
O(1W)–H(1WC)	0.82(5)	1.11(8)	1.132	
O(2W)····H(1WC)	1.66(5)	1.40(8)	1.352	
O(3W)–H(3WC)				1.019
O(4W)····H(3WC)				1.446