Synthesis and crystal structures of Zn(II) and Co(II) coordination compounds with ortho substituted pyridine ligands: Two structure types and polymorphism in the region of their coexistence.

Susanne Wöhlert, Inke Jess, Ulli Englert and Christian Näther*

Figure S1	ORTEP plot of compound 1-Zn	2
Figure S2	ORTEP plot of compound 2-Zn	3
Figure S3	ORTEP plot of compound 3-Coa	4
Figure S4	ORTEP plot of compound 3-Coβ	5
Table S1	Crystal data of compound 3-Coβ at $T = 200$ K	6
Figure S5	ORTEP plot of compound 3-Znα	7
Figure S6	ORTEP plot of compound 3-Znβ	8
Figure S7	Comparison of molecular geometries	9
Figure S8	XRPD of compound 1-Co	10
Figure S9	XRPD of compound 1-Zn	10
Figure S10	XRPD of compound 2-Co	11
Figure S11	XRPD of compound 2-Zn	11
Figure S12	XRPD of compound 3-Coα	12
Figure S13	XRPD of compound 3-Coβ	12
Figure S14	XRPD of compound $3-Zn\alpha$	13
Figure S15	DSC measurement of compound 1-Co	13
Figure S16	DSC measurement of compound 1-Zn	14
Figure S17	DSC measurement of compound 2-Co	14
Figure S18	DSC measurement of compound 2-Zn	15
Figure S19	DSC measurement of compound 3-Coβ	15
Figure S20	XRPD of the intermediates of compound 1-Zn	16
Figure S21	XRPD of the intermediates of compound 2-Co	16
Figure S22	XRPD of the intermediates of compound 3-Coβ	17
Figure S23	XRPD of $3-Zn\alpha$ at 130 °C and 160 °C	17
Figure S24	XRPD of 3-Coα at 130 °C and 160 °C	18
Figure S25	IR spectrum of compound 1-Co	18
Figure S26	IR spectrum of compound 1-Zn	19
Figure S27	IR spectrum of compound 2-Co	19
Figure S28	IR spectrum of compound 2-Zn	20
Figure S29	IR spectrum of compound 3-Coa	20
Figure S30	IR spectrum of compound 3-Coβ	21
Figure S31	IR spectrum of compound 3-Znα	21

Figure S1. Crystal structure of $Zn(NCS)_2(2$ -methylpyridine)₂ (**1-Zn**) with view of the coordination sphere of the zinc(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level.

Figure S2. Crystal structure of $Zn(NCS)_2(2$ -bromopyridine)₂ (**2-Zn**) with view of the coordination sphere of the zinc(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level. Symmetry code: A = -x + 1, y, -z + $\frac{1}{2}$.

Figure S3. Crystal structure of $Co(NCS)_2(2$ -chloropyridine)₂ (**3-Coa**) with view of the coordination sphere of the cobalt(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level.

Figure S4. Crystal structure of $Co(NCS)_2(2$ -chloropyridine)_2 (**3-Co** β) with view of the coordination sphere of the cobalt(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level. Symmetry code: A = -x, y, -z + $\frac{1}{2}$.

Table S1. Selected crystal data on the structure determination from single crystal data for compound $Co(NCS)_2(2$ -chloropyridine)₂ (**3-Co** β) at T = 200 K.

compound	3-Соβ	
Formula	$C_{12}H_8Cl_2CoN_4S_2$	
$MW / g \cdot mol^{-1}$	402.17	
Crystal system	orthorhombic	
Space group	Pbcn	
a /Å	11.2928(7)	
b / Å	9.7123(5)	
<i>c</i> / Å	15.1913(8)	
$V/\text{\AA}^3$	1666.17(16)	
T / K	200	
Ζ	4	
$D_{ m calc}$ / mg·m ³	1.603	
μ / mm^{-1}	1.597	
$ heta_{ m max}$ / °	28.03	
Refl. collected	11189	
Unique reflections	2005	
$R_{\rm int}$	0.0342	
Refl. $[F_0 > 4\sigma(F_0)]$	1671	
Parameters	97	
$R_1 [F_0 > 4\sigma(F_0)]$	0.0312	
wR_2	0.0799	
GOF	1.036	
$\Delta \rho_{ m max/min}$ / e·Å ⁻³	0.377 / -0.442	

Figure S5. Crystal structure of $Zn(NCS)_2(2$ -chloropyridine)₂ (**3-Zn** α) with view of the coordination sphere of the zinc(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level.

Figure S6. Crystal structure of $Zn(NCS)_2(2$ -chloropyridine)₂ (**3-Zn** β) with view of the coordination sphere of the zinc(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level. Symmetry code: A = -x + 1, y, -z + 3/2.

Figure S7. Comparison of molecular geometries: a) Molecule of **3-Zn** α as found in the crystal (space group $P2_12_12_1$); b) Molecule of **3-Zn** β (crystals in *Pbcn*); c) Molecule of **3-Zn** α after force field energy minimization; d) Molecule of **1-Zn** after force field energy minimization. Note the similarity between the experimentally determined molecular structure in *Pbcn* (b) and the minimization results (c and d).

Figure S8. Experimental XRPD pattern of compound **1-Co** (A) and XRPD calculated from single crystal data of compound **1-Co** (B).

Figure S9. Experimental XRPD pattern of compound **1-Zn** (A) and XRPD calculated from single crystal data of compound **1-Zn** (B).

Figure S10. Experimental XRPD pattern of compound 2-Co (A) and XRPD calculated from

single crystal data of compound 2-Co (B).

Figure S11. Experimental XRPD pattern of compound **2-Zn** (A) and XRPD calculated from single crystal data of compound **2-Zn** (B).

Figure S12. Experimental XRPD pattern of compound **3-Coα** (A) and XRPD calculated from single crystal data of compound **3-Coα** (B).

Figure S13. Experimental XRPD pattern of compound **3-Coβ** (A) and XRPD calculated from single crystal data of compound **3-Coβ** (B).

Figure S14. Experimental XRPD pattern of compound 3-Zn α (A) and XRPD calculated from

single crystal data of compound **3-Znα** (B).

Figure S15. Differential scanning calorimetry (DSC) measurement for compound 1-Co.

Heating rate 3 °C·min⁻¹; N₂ atmosphere; T_P = peak temperature (°C).

Figure S16. Differential scanning calorimetry (DSC) measurement for compound 1-Zn.

Heating rate 3 °C·min⁻¹; N₂ atmosphere; T_P = peak temperature (°C).

Figure S17. Differential scanning calorimetry (DSC) measurement for compound 2-Co.

Heating rate 3 °C·min⁻¹; N₂ atmosphere; T_P = peak temperature (°C).

Figure S18. Differential scanning calorimetry (DSC) measurement for compound **2-Zn**. Heating rate 3 °C·min⁻¹; N₂ atmosphere; T_P = peak temperature (°C).

Figure S19. Differential scanning calorimetry (DSC) measurement for compound 3-Coβ.

Heating rate 3 °C·min⁻¹; N₂ atmosphere; T_P = peak temperature (°C).

Figure S20. Experimental XRPD of compound **1-Zn** (top) and the intermediate, which were obtained at 134 °C in the DSC measurement of compound **1-Zn** (middle) as well as XRPD calculated from single crystal data of **1-Zn** (bottom).

Figure S21. Experimental XRPD of compound **2-Co** (top) and the intermediate, which were obtained at 53 °C and 72 °C in the DSC measurement of compound **2-Co** (middle) as well as XRPD calculated from single crystal data of **2-Co** (bottom).

Figure S22. Experimental XRPD of compound **3-Co** β (top) and the intermediate, which were obtained at 84.8 °C in the DSC measurement of compound **3-Co** β (middle) as well as XRPD calculated from single crystal data of **3-Co** β (bottom).

Figure S23. Experimental XRPD of the residues which were obtained after heating **3-Zn** α at 130 °C and at 160 °C for three days in methanol and experimental and calculated powder pattern of **3-Zn** α .

Figure S24. Experimental XRPD of the residues which were obtained after heating **3-Coa** at 130 °C and at 160 °C for three days in methanol and experimental and calculated powder pattern of **3-Coa**.

Figure S255. IR spectrum of Co(NCS)₂(2-methylpyridine)₂ (1-Co).

Figure S266. IR spectrum of Zn(NCS)₂(2-methylpyridine)₂ (1-Zn).

Figure S277. IR spectrum of Co(NCS)₂(2-bromopyridine)₂ (2-Co).

Figure S288. IR spectrum of Zn(NCS)₂(2-bromopyridine)₂ (2-Zn).

Figure S29. IR spectrum of Co(NCS)₂(2-chloropyridine)₂ (**3-Coα**).

Figure S30. IR spectrum of Co(NCS)₂(2-chloropyridine)₂ (3-Coβ).

Figure S291. IR spectrum of Zn(NCS)₂(2-chloropyridine)₂ (3-Znα).