Supporting Information

Assembly of Silver(I)–Organic Frameworks from Flexible Supramolecular Synthons with Pendant Ethynide Arms Attached to Biphenyl and Phenoxybenzene Skeletons

Bo Li,^{*a*} Ren-Wu Huang,^{*a*} Shuang-Quan Zang,^{*,*a*} and Thomas C. W. Mak^{*a,b*}

^{*a*}The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China

^bDepartment of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China

Author for correspondence: Dr. S.-Q. Zang, E-mail: <u>zangsqzg@zzu.edu.cn;</u>

	1	2	3
formula	$C_{19}H_{11}Ag_3F_6O_5$	$C_{27}H_{16}Ag_{6}F_{15}NO_{12} \\$	$C_{60}H_{44}Ag_6N_2O_{10}\\$
fw	756.89	1478.63	1600.19
cryst syst	monoclinic	triclinic	triclinic
space group	C2/c	Pī	$P\overline{1}$
<i>a</i> (Å)	20.9095(16)	11.746(2)	7.6485(2)
<i>b</i> (Å)	19.3423(8)	12.454(3)	11.1943(3)
<i>c</i> (Å)	11.6313(8)	14.005(3)	30.1822(7)
α (deg)	90	76.38(3)	94.781(2)
β (deg)	119.100(10)	74.67(3)	92.459(2)
γ (deg)	90	87.77(3)	90.367(2)
volume (Å ³)	4110.3(5)	1919.6(7)	2572.70(11)
Ζ	8	2	2
$D_{\text{calc}} (\text{g} \cdot \text{cm}^{-3})$	2.446	2.558	2.066
<i>F</i> (000)	2880	1396	1560
<i>R</i> (int)	0.0287	0.0280	0.0309
GOF	1.086	1.030	1.024
$R_1[(I > 2\sigma(I))]$	0.0484	0.0524	0.0542
$wR_2[(I>2\sigma(I)]$	0.1214	0.1180	0.1253
R_1 (all data)	0.0619	0.0594	0.0709
wR_2 (all data)	0.1298	0.1226	0.1351

 Table S1. X-ray Crystal Data and Structure Refinement for Compounds 1–3.

 Table S2. X-ray Crystal Data and Structure Refinement for Compounds 4–6.

	4	5	6
formula	$C_{23}H_{11}Ag_5F_{12}O_{10}\\$	$C_{36}H_{22}Ag_5F_9O_{10}\\$	$C_{82}H_{54}Ag_8F_{18}N_8O_{14}\\$
fw	1214.67	1324.89	2580.29
cryst syst	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/c$	C2/c	<i>P</i> 2 ₁ /c
a (Å)	9.0069(18)	32.536(6)	13.8833(14)
<i>b</i> (Å)	23.389(5)	11.670(2)	24.923(3)
<i>c</i> (Å)	16.537(5)	26.226(5)	13.0817(13)
α (deg)	90	90	90
β (deg)	118.56(2)	127.60(3)	114.308(2)
γ (deg)	90	90	90
volume (Å ³)	3059.8(13)	7890(2)	4125.1(7)
Ζ	4	8	2
$D_{\rm calc} ({\rm g} \cdot {\rm cm}^{-3})$	2.637	2.231	2.077
<i>F</i> (000)	2288	5072	2504
<i>R</i> (int)	0.0537	0.0993	0.0886

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

GOF	1.101	1.082	1.003
$R_1[(I > 2\sigma(I))]$	0.0727	0.1225	0.0270
$wR_2[(I > 2\sigma(I))]$	0.1752	0.4347	0.0645
R_1 (all data)	0.0854	0.1495	0.0345
wR_2 (all data)	0.1855	0.4614	0.0671

Table S3. Selected Bond Lengths (Å) for Complexes $1-6^a$

		-	1		
C1≡C2	1.202(7)	Ag1-C1	2.122(6)	Ag2–C1	2.293(7)
Ag2–C2	2.654(8)	Ag3–C1	2.371(7)	Ag3–C2	2.843(9)
Ag2–C9	2.989(9)	Ag3-C5#2	2.499(7)	Ag3-C6#2	2.690(8)
Ag1-Ag1#1	3.134(10)	Ag1-Ag1#2	3.250(11)	Ag1–Ag2	2.964(9)
Ag1-Ag2#2	3.108(9)	Ag2-Ag3#2	3.268(9)		
			2		
C1≡C2	1.207(11)	Ag1–C1	2.169(7)	Ag2–C1	2.227(7)
Ag2–C2	2.999(6)	Ag3–C1	2.672(7)	Ag3–C2	2.845(6)
Ag4–C1	2.455(7)	Ag4–C2	2.644(8)	Ag5–C1	2.348(7)
Ag5–C2	3.049(5)	Ag6–C4	2.894(2)	Ag6-C5	2.912(1)
Ag3#1-C12	2.776(11)	Ag6#1-C14	3.029(11)	Ag1…Ag2	2.787(11)
Ag1…Ag3	3.162(13)	Ag1…Ag4	2.907(12)	Ag1…Ag5	2.983(12)
Ag2···Ag3	3.185(17)	Ag2…Ag5	3.073(14)	Ag4…Ag5	3.324(17)
Ag3…Ag6	2.938(16)				
		-	3		
C1≡C2	1.211(9)	C16≡C17	1.216(7)	C31=C32	1.198(9)
C46≡C47	1.204(9)	Ag1–C1	2.089(6)	Ag1-C46	2.093(6)
Ag2–C1	2.306(7)	Ag2–C2	2.676(7)	Ag2-C16#4	2.273(7)
Ag3–C46	2.216(7)	Ag3-C16#2	2.277(7)	Ag3-C17#2	2.547(6)
Ag3–C47	2.685(7)	Ag4–C46	2.275(7)	Ag4-C31	2.291(7)
Ag5-C31	2.100(7)	Ag5-C16	2.105(6)	Ag6-C1#2	2.256(7)
Ag6-C32	2.571(7)	Ag6-C2#2	2.673(6)	Ag6-C31	2.262(7)
Ag1…Ag6#2	2.985(9)	Ag1…Ag4	3.061(9)	Ag1···Ag5#3	3.231(7)
Ag1…Ag2	3.296(8)	Ag1…Ag3	2.981(8)	Ag2…Ag5#4	3.099 (10)
Ag3····Ag5#2	3.053(9)	Ag4…Ag5	3.229(10)	Ag5…Ag6	2.991(8)
4					
C1≡C2	1.205(14)	Ag1–C1	2.214(10)	Ag2–C1	2.308(10)
Ag2#3-C1	2.601(10)	Ag2#3-C2	2.591(11)	Ag3#2C1	2.309(10)
Ag3#2-C2	2.507(11)	Ag4#1-C1	2.429(10)	Ag4#1-C2	2.971(9)
Ag4#1-C5	2.683(12)	Ag4#1–C6	2.684(12)	Ag5#4-C13	2.518(3)
Ag5#4–C14	2.523(2)	Ag1···Ag2	2.7941(14)	Ag(1)···Ag(4)#1	2.9492(16)
Ag(1)Ag(3)#2	2.9937(14)	Ag(2)···Ag(2)#3	2.822(2)	Ag(2)···Ag(4)#1	3.2142(19)
Ag2#3…Ag3#2	2.226(2)				
			5		

C1≡C2	1.206(10)	Ag1-C16	2.120(2)	Ag2-C16	2.400(2)
Ag2-C17	2.796(3)	Ag2–C1	2.220(2)	Ag2–C2	2.603(19)
Ag3-C16	2.200(2)	Ag3-C17	2.650(2)	Ag3#2-C8	2.744(4)
Ag3#2-C9	2.868 (3)	Ag4–C1	2.160(2)	Ag2–C24	2.954(2)
Ag4-C20	2.815(2)	Ag5#1-C16	2.884(2)	Ag1····Ag2	3.101(3)
Ag1····Ag3	2.989(3)	Ag1···Ag5	3.236(3)	Ag1···Ag5#1	3.142(3)
Ag2···Ag4	3.240(3)	Ag2···Ag5	3.322(3)	Ag3···Ag4	3.118(3)
		6			
C1≡C2	1.195(4)	Ag1–C1	2.381(3)	Ag1–N1	2.343(2)
Ag1–N2	2.384(2)	Ag2–C1	2.205(3)	Ag3–C1	2.417(3)
Ag3–C2	2.646(3)	Ag4–C1	2.184(3)	Ag4–C2	2.974(4)
Ag4–N3	2.185(3)	Ag4–N4	2.371(3)		
Ag1…Ag2	2.927(4)	Ag1····Ag3	2.941(4)	Ag1···Ag4	2.859(5)
Ag2···Ag3	3.015(4)	Ag2···Ag4	2.828 (6)	Ag2···Ag3#1	3.091 (4)

^{*a*}Symmetry transformations used to generate equivalent atoms: #1 - x, -y, 2 - z; #2 - x, y, 1.5 - z for **1**, #1 2 - x, 2 - y, -z for **2**; #2 - x, -y+2, -z; #3 - x + 1, -y + 2, -z; #4 x, y - 1, z for **3**; #1 1 + x, y, z; #2 - x, 2 - y, 1 - z; #3 1 - x, 2 - y, 1 - z for **4**; #1 1/2 - x, -1/2 + y, 1/2 - z; #2 1/2 - x, 1/2 + y, 1/2 - z for **5**; #1 - x, -y + 1, -z + 1; #2 x, y, z - 1 for **6**.

	$\lambda_{\rm ex}$ (nm)	$\lambda_{\rm em}$ (nm)		
Ligand				
HL1	314	372		
HL2	325	375		
Compounds				
1	369	396		
2	349	373		
3	325	367		
4	328	396,415		
5	321, 357	438		
6	301	373		

Table S4. Emission Maximums and Excitation Wavelengths (nm)

Fig. S1. Solid state excitation and emission spectra of ligand HL1 at room temperature.

Fig. S2. Solid state excitation and emission spectra of ligand HL2 at room temperature.

Fig. S3. Solid state excitation and emission spectra of complex 1 at room temperature.

Fig. S4. Solid state excitation and emission spectra of complex 2 at room temperature.

Fig. S5. Solid state excitation and emission spectra of complex 3 at room temperature.

Fig. S6. Solid state excitation and emission spectra of complex 4 at room temperature.

Fig. S7. Solid state excitation and emission spectra of complex 5 at room temperature.

Fig. S8. Solid state excitation and emission spectra of complex 6 at room temperature.