Supporting Information for the manuscript:

Effect of lanthanide contraction on crystal structures of Ln(III) coordination polymers with dinuclear SBUs based on 3-(4hydroxypyridinium-1-yl) phthalic acid and oxalic acid

Xiao-Li Sun,^a Bing-Xue Shen,^a Shuang-Quan Zang,^{a*} and Chen-Xia Du^{a*}

[†]College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China

*To whom correspondence should be addressed. E-mail: <u>zangsqzg@zzu.edu.cn</u>; <u>dcx@zzu.edu.cn</u> Fax: +86-371-67780136; +86-371-67763390.

This PDF file includes Table S1–S2, and Figure S1–S8

 Table S1.Selected Bond Distances and Angles for Compounds 1–11.

- Table S2. Hydrogen bonds parameters in 1.
- Fig. S1. Hydrogen-bonding tape in 1.
- Fig. S2. Views of hydrogen-bond interactions in 3.
- Fig. S3. Local coordination environment of 6 with 30% thermal ellipsoids.
- Fig. S4. Local coordination environment of 8 with 30% thermal ellipsoids.
- Fig. S5. Thermogravimetric curve of the compounds 1, 3, 6, and 8.
- Fig. S6. Thermogravimetric curve of the compounds 2, 4, 5, 7 and 9–11.
- Fig. S7. The simulated and experimental XRPD patterns for 1–2.
- Fig. S8. The simulated and experimental XRPD patterns for 3–11.

Table S1. Selected Bond Distances and Angles for Compounds 1–11.

Compound 1^a				
La(1)–O(1)	2.633(4)	La(1)–O(2)#1	2.577(3)	
La(1)–O(2)	2.654(3)	La(1)-O(3)#1	2.475(3)	
La(1)–O(1W)	2.555(4)	La(1)-O(5)#2	2.452(3)	
La(1)–O(2W)	2.612(4)	La(1)-O(7)#3	2.583(3)	
La(1)–O(6)	2.560(3)	O(1)–La(1)–O(2)	49.16(10)	
O(2W)–La(1)–O(2)	75.65(11)	O(7)#3-La(1)-O(2)	70.39(11)	
O(2)#1-La(1)-O(2)	65.72(12)	O(6)–La(1)–O(2)	88.58(11)	
O(1W)–La(1)–O(2)	144.72(11)	O(3)#1-La(1)-O(2)	126.94(11)	
O(5)#2-La(1)-O(2)	129.16(12)	O(2W)–La(1)–O(1)	66.12(13)	
O(7)#3-La(1)-O(1)	101.69(11)	O(2)#1-La(1)-O(1)	111.78(11)	
O(6)–La(1)–O(1)	70.48(13)	O(1W)–La(1)–O(1)	142.58(13)	
O(3)#1-La(1)-O(1)	137.52(12)	O(5)#2-La(1)-O(1)	80.26(12)	
O(7)#3-La(1)-O(2W)	142.15(11)	O(2)#1-La(1)-O(2W)	81.90(12)	
O(6)-La(1)-O(2W)	133.49(13)	O(1W)-La(1)-O(2W)	137.46(12)	
O(3)#1-La(1)-O(2W)	72.22(13)	O(5)#2-La(1)-O(2W)	79.86(12)	
O(2)#1-La(1)-O(7)#3	69.37(10)	O(6)-La(1)-O(7)#3	62.47(10)	
O(1W)-La(1)-O(7)#3	74.32(12)	O(3)#1-La(1)-O(7)#3	116.50(11)	
O(5)#2-La(1)-O(7)#3	135.44(12)	O(6)-La(1)-O(2)#1	130.80(10)	
O(1W)-La(1)-O(2)#1	101.66(12)	O(3)#1-La(1)-O(2)#1	68.83(10)	
O(5)#2-La(1)-O(2)#1	151.51(11)	O(1W)–La(1)–O(6)	75.17(13)	
O(3)#1-La(1)-O(6)	143.32(13)	O(5)#2-La(1)-O(6)	77.13(11)	
O(3)#1-La(1)-O(1W)	69.97(13)	O(5)#2-La(1)-O(1W)	78.05(13)	
O(5)#2-La(1)-O(3)#1	84.79(11)			
	Compo	bund 2^b		
Ce(1)–O(1)	2.446(3)	Ce(1)–O(3)	2.564(3)	
Ce(1)-O(4)#3	2.609(3)	Ce(1)-O(3)#3	2.643(3)	
Ce(1)-O(1W)	2.540(4)	Ce(1)-O(5)#1	2.424(3)	
Ce(1)–O(2W)	2.576(4)	Ce(1)-O(7)#2	2.535(3)	
Ce(1)–O(6)	2.566(3)	O(1)-Ce(1)-O(7)#2	142.83(12)	
O(5)#1-Ce(1)-O(1)	84.72(11)	O(5)#1-Ce(1)-O(1W)	77.63(13)	

O(5)#1-Ce(1)-O(7)#2	77.41(11)	O(7)#2-Ce(1)-O(1W)	74.91(12)
O(1W)-Ce(1)-O(3)	150.86(11)	O(1)-Ce(1)-O(3)	69.02(11)
O(5)#1-Ce(1)-O(3)	150.86(11)	O(1W)-Ce(1)-O(3)	103.43(12)
O(7)#2-Ce(1)-O(3)	131.42(10)	O(5)#1-Ce(1)-O(6)	136.20(12)
O(6)-Ce(1)-O(1)	115.33(11)	O(7)#2-Ce(1)-O(6)	63.12(10)
O(1W)-Ce(1)-O(6)	74.55(12)	O(3)-Ce(1)-O(6)	69.64(10)
O(5)#1-Ce(1)-O(2W)	79.25(12)	O(1)-Ce(1)-O(2W)	72.65(13)
O(7)#2-Ce(1)-O(2W)	133.51(12)	O(1W)-Ce(1)-O(2W)	136.97(13)
O(3)-Ce(1)-O(2W)	80.95(11)	O(6)-Ce(1)-O(2W)	142.34(12)
O(5)#1-Ce(1)-O(4)#3	79.47(11)	O(1)-Ce(1)-O(4)#3	138.13(12)
O(7)#2-Ce(1)-O(4)#3	70.10(12)	O(1W)-Ce(1)-O(4)#3	141.47(13)
O(3)#1-Ce(1)-O(4)#3	111.57(11)	O(6)-Ce(1)-O(4)#3	102.62(11)
O(2W)-Ce(1)-O(4)#3	66.44(13)	O(5)#1-Ce(1)-O(3)#3	128.61(11)
O(1)#1-Ce(1)-O(3)#3	127.63(11)	O(7)#2-Ce(1)-O(3)#3	88.33(11)
O(3)#3-Ce(1)-O(1W)	145.38(12)	O(2W)-Ce(1)-O(3)#3	75.87(12)
O(3)#3-Ce(1)-O(3)	65.49(11)	O(4)#3-Ce(1)-O(3)#3	49.43(10)
O(6)-Ce(1)-O(3)#3	70.85(10)		
O(6)–Ce(1)–O(3)#3	70.85(10) Compo	bund 3 ^c	
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1)	70.85(10) Compo 2.541(3)	ound 3 ^c Pr(1)–O(9)#2	2.476(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2)	70.85(10) Compo 2.541(3) 2.843(3)	Dund 3 ^c Pr(1)–O(9)#2 Pr(1)–O(10)	2.476(3) 2.483(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W)	70.85(10) Compo 2.541(3) 2.843(3) 2.456(3)	Pr(1)–O(9)#2 Pr(1)–O(10) Pr(1)–O(3)#1	2.476(3) 2.483(3) 2.594(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(2W)	70.85(10) Compo 2.541(3) 2.843(3) 2.456(3) 2.450(3)	Pr(1)–O(9)#2 Pr(1)–O(10) Pr(1)–O(3)#1 Pr(1)–O(4)#1	2.476(3) 2.483(3) 2.594(3) 2.843(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(2W) Pr(1)-O(7)#2	70.85(10) Compo 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3)	Pr(1)–O(9)#2 Pr(1)–O(10) Pr(1)–O(3)#1 Pr(1)–O(4)#1 Pr(2)–O(2)	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(2W) Pr(1)-O(7)#2 Pr(2)-O(6)	70.85(10) Compared 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3) 2.477(3)	Pr(1)–O(9)#2 Pr(1)–O(10) Pr(1)–O(3)#1 Pr(1)–O(4)#1 Pr(2)–O(2) Pr(2)–O(11)	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3) 2.562(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(2W) Pr(1)-O(7)#2 Pr(2)-O(6) Pr(2)-O(8)	70.85(10) Compo 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3) 2.477(3) 2.482(3)	Dund 3 ^c Pr(1)-O(9)#2 Pr(1)-O(10) Pr(1)-O(3)#1 Pr(1)-O(4)#1 Pr(2)-O(2) Pr(2)-O(11) Pr(2)-O(12)#3	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3) 2.562(3) 2.537(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(2W) Pr(2)-O(6) Pr(2)-O(6) Pr(2)-O(8) Pr(2)-O(3W)	70.85(10) Compo 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3) 2.477(3) 2.482(3) 2.488(3)	Pr(1)-O(9)#2 Pr(1)-O(10) Pr(1)-O(3)#1 Pr(1)-O(4)#1 Pr(2)-O(2) Pr(2)-O(11) Pr(2)-O(12)#3 Pr(2)-O(13)#3	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3) 2.562(3) 2.537(3) 2.620(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(2W) Pr(1)-O(7)#2 Pr(2)-O(6) Pr(2)-O(8) Pr(2)-O(3W) Pr(2)-O(10)	70.85(10) Compo 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3) 2.477(3) 2.482(3) 2.488(3) 2.727(3)	Pr(1)-O(9)#2 Pr(1)-O(10) Pr(1)-O(3)#1 Pr(1)-O(4)#1 Pr(2)-O(2) Pr(2)-O(11) Pr(2)-O(12)#3 Pr(2)-O(13)#3 Pr(2)-O(14)#4	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3) 2.562(3) 2.537(3) 2.620(3) 2.378(3)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(2W) Pr(1)-O(7)#2 Pr(2)-O(6) Pr(2)-O(8) Pr(2)-O(3W) Pr(2)-O(10) O(7)#2-Pr(1)-O(2W)	70.85(10) Compared 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3) 2.477(3) 2.482(3) 2.727(3) 97.06(11)	3^{c} $Pr(1)-O(9)#2$ $Pr(1)-O(10)$ $Pr(1)-O(3)#1$ $Pr(1)-O(4)#1$ $Pr(2)-O(2)$ $Pr(2)-O(11)$ $Pr(2)-O(12)#3$ $Pr(2)-O(13)#3$ $Pr(2)-O(14)#4$ $O(7)#2-Pr(1)-O(1W)$	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3) 2.562(3) 2.537(3) 2.620(3) 2.378(3) 131.43(11)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(2)-O(3W) Pr(2)-O(10) O(7)#2-Pr(1)-O(2W) O(1W)-Pr(1)-O(2W)	70.85(10) Compared 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3) 2.477(3) 2.482(3) 2.727(3) 97.06(11) 78.12(12)	3^{c} $Pr(1)-O(9)#2$ $Pr(1)-O(10)$ $Pr(1)-O(3)#1$ $Pr(1)-O(4)#1$ $Pr(2)-O(2)$ $Pr(2)-O(11)$ $Pr(2)-O(12)#3$ $Pr(2)-O(13)#3$ $Pr(2)-O(14)#4$ $O(7)#2-Pr(1)-O(1W)$ $O(7)#2-Pr(1)-O(9)#2$	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3) 2.562(3) 2.537(3) 2.620(3) 2.378(3) 131.43(11) 65.51(10)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(1W) Pr(1)-O(2W) Pr(2)-O(6) Pr(2)-O(6) Pr(2)-O(6) Pr(2)-O(6) Pr(2)-O(6) O(7)#2-Pr(1)-O(2W) O(1W)-Pr(1)-O(2W) O(2W)-Pr(1)-O(9)#2	70.85(10) Competition 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3) 2.477(3) 2.482(3) 2.488(3) 2.727(3) 97.06(11) 78.12(12) 76.97(12)	Dund 3^{c} $Pr(1)-O(9)#2$ $Pr(1)-O(10)$ $Pr(1)-O(3)#1$ $Pr(1)-O(4)#1$ $Pr(2)-O(2)$ $Pr(2)-O(11)$ $Pr(2)-O(12)#3$ $Pr(2)-O(13)#3$ $Pr(2)-O(14)#4$ $O(7)#2-Pr(1)-O(1W)$ $O(7)#2-Pr(1)-O(9)#2$ $O(1W)-Pr(1)-O(9)#2$	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3) 2.562(3) 2.537(3) 2.620(3) 2.378(3) 131.43(11) 65.51(10) 66.35(11)
O(6)-Ce(1)-O(3)#3 Pr(1)-O(1) Pr(1)-O(2) Pr(1)-O(1W) Pr(2)-O(3W) Pr(2)-O(3W) Pr(2)-O(10) O(7)#2-Pr(1)-O(2W) O(1W)-Pr(1)-O(2W) O(2W)-Pr(1)-O(9)#2 O(7)#2-Pr(1)-O(10)	70.85(10) 2.541(3) 2.843(3) 2.456(3) 2.450(3) 2.457(3) 2.477(3) 2.482(3) 2.727(3) 97.06(11) 78.12(12) 76.97(12) 153.21(10)	Pr(1)-O(9)#2 $Pr(1)-O(10)$ $Pr(1)-O(3)#1$ $Pr(1)-O(4)#1$ $Pr(2)-O(2)$ $Pr(2)-O(11)$ $Pr(2)-O(12)#3$ $Pr(2)-O(13)#3$ $Pr(2)-O(14)#4$ $O(7)#2-Pr(1)-O(1W)$ $O(7)#2-Pr(1)-O(9)#2$ $O(1W)-Pr(1)-O(9)#2$ $O(2W)-Pr(1)-O(10)$	2.476(3) 2.483(3) 2.594(3) 2.843(3) 2.510(3) 2.562(3) 2.537(3) 2.620(3) 2.378(3) 131.43(11) 65.51(10) 66.35(11) 90.41(11)

O(7)#2-Pr(1)-O(4)#1	74.60(12)	O(2W)-Pr(1)-O(4)#1	69.01(10)
O(1W)-Pr(1)-O(4)#1	140.96(12)	O(9)#2-Pr(1)-O(4)#1	122.86(12)
O(10)-Pr(1)-O(4)#1	84.29(11)	O(7)#1-Pr(1)-O(1)	71.20(11)
O(2W)-Pr(1)-O(1)	151.58(11)	O(1W)-Pr(1)-O(1)	90.34(12)
O(9)#2-Pr(1)-O(1)	74.62(11)	O(10)-Pr(1)-O(1)	111.87(10)
O(4)#1-Pr(1)-O(1)	128.39(11)	O(7)#2-Pr(1)-O(3)#1	73.78(10)
O(2W)-Pr(1)-O(3)#1	120.31(11)	O(1W)-Pr(1)-O(3)#1	149.50(10)
O(9)#2-Pr(1)-O(3)#1	137.71(10)	O(10)-Pr(1)-O(3)#1	80.23(10)
O(4)#1-Pr(1)-O(3)#1	51.51(10)	O(1)-Pr(1)-O(3)#1	82.13(11)
O(7)#2-Pr(1)-O(2)#3	117.46(10)	O(2W)-Pr(1)-O(2)	143.13(10)
O(1W)-Pr(1)-O(2)	69.60(10)	O(9)#2-Pr(1)-O(2)	104.71(11)
O(4)#1-Pr(1)-O(2)	130.01(9)	O(1)-Pr(1)-O(2)	48.01(10)
O(3)#1-Pr(1)-O(2)	83.75(10)	O(10)-Pr(1)-O(2)	64.91(10)
O(14)#4-Pr(2)-O(8)	91.79(11)	O(6)-Pr(2)-O(8)	65.85(9)
O(14)#4-Pr(2)-O(3W)	80.35(12)	O(6)-Pr(2)-O(3W)	69.08(10)
O(8)-Pr(2)-O(3W)	134.80(10)	O(14)#4-Pr(2)-O(2)	93.85(11)
O(6)-Pr(2)-O(2)	138.64(10)	O(8)-Pr(2)-O(2)	155.45(10)
O(3W)-Pr(2)-O(6)	69.75(11)	O(14)#4-Pr(2)-O(12)#3	80.51(10)
O(6)-Pr(2)-O(12)#3	130.43(11)	O(8)-Pr(2)-O(12)#3	72.23(11)
O(3W)-Pr(2)-O(12)#3	147.12(12)	O(2)-Pr(2)-O(12)#3	85.17(11)
O(14)#4-Pr(2)-O(11)	144.23(10)	O(6)-Pr(2)-O(11)	68.76(10)
O(8)-Pr(2)-O(11)	70.57(10)	O(3W)-Pr(2)-O(11)	90.34(11)
O(2)-Pr(2)-O(11)	115.28(10)	O(12)#3-Pr(2)-O(11)	120.24(10)
O(14)#4-Pr(2)-O(13)#3	131.03(11)	O(6)-Pr(2)-O(13)#3	133.26(10)
O(8)-Pr(2)-O(13)#3	74.71(9)	O(3W)-Pr(2)-O(13)#3	140.91(10)
O(2)-Pr(2)-O(13)#3	83.64(10)	O(12)#3-Pr(2)-O(13)#3	50.52(9)
O(11)-Pr(2)-O(13)#3	75.37(10)	O(14)#4-Pr(2)-O(10)	148.18(10)
O(6)-Pr(2)-O(10)	102.18(10)	O(8)-Pr(2)-O(10)	116.72(10)
O(3W)-Pr(2)-O(10)	69.64(10)	O(2)-Pr(2)-O(10)	66.42(10)
O(12)#3-Pr(2)-O(10)	119.97(9)	O(11)-Pr(2)-O(10)	49.05(9)
O(13)#3-Pr(2)-O(10)	73.72(9)	O(14)#4–Pr(2)–O(2)	75.68(11)

Compound $\mathbf{4}^d$

Nd(1)-O(1)	2.725(3)	Nd(2)-O(7)#3	2.438(3)
Nd(1)–O(2)	2.539(3)	Nd(2)-O(3W)	2.439(3)
Nd(1)-O(1W)	2.473(3)	Nd(2)-O(13)#4	2.463(3)
Nd(1)-O(10)	2.494(3)	Nd(2)-O(9)#3	2.469(3)
Nd(1)-O(5)#1	2.372(3)	Nd(2)-O(2W)	2.426(3)
Nd(1)–O(6)	2.473(3)	Nd(2)–O(1)	2.470(3)
Nd(1)–O(8)	2.465(3)	Nd(2)–O(11)	2.514(3)
Nd(1)-O(4)#2	2.514(3)	Nd(2)-O(12)#4	2.577(3)
Nd(1)-O(3)#2	2.600(2)	Nd(2)–O(10)	2.863(3)
O(5)#1-Nd(1)-O(8)	91.64(11)	O(5)#1-Nd(1)-O(6)	75.59(10)
O(8)-Nd(1)-O(6)	66.26(9)	O(5)#1-Nd(1)-O(1W)	80.47(11)
O(8)-Nd(1)-O(1W)	135.13(9)	O(6)-Nd(1)-O(1W)	69.00(10)
O(5)#1-Nd(1)-O(10)	93.76(11)	O(8)-Nd(1)-O(10)	154.90(9)
O(6)-Nd(1)-O(10)	138.76(9)	O(1W)-Nd(1)-O(10)	69.97(10)
O(5)#1-Nd(1)-O(4)#2	80.18(10)	O(8)-Nd(1)-O(4)#2	72.18(10)
O(6)-Nd(1)-O(4)#2	130.57(11)	O(1W)-Nd(1)-O(4)#2	146.75(10)
O(10)-Nd(1)-O(4)#2	84.62(11)	O(5)#1-Nd(1)-O(2)	144.45(10)
O(8)-Nd(1)-O(2)	70.92(10)	O(6)-Nd(1)-O(2)	69.08(9)
O(1W)-Nd(1)-O(2)	90.36(10)	O(10)-Nd(1)-O(2)	115.32(10)
O(4)#2-Nd(1)-O(2)	120.53(9)	O(5)#1-Nd(1)-O(3)#2	131.07(10)
O(8)-Nd(1)-O(3)#2	74.73(9)	O(6)-Nd(1)-O(3)#2	133.56(9)
O(1W)-Nd(1)-O(3)#2	140.65(10)	O(10)-Nd(1)-O(3)#2	83.31(9)
O(4)#2-Nd(1)-O(3)#2	50.89(9)	O(2)-Nd(1)-O(3)#2	75.22(9)
O(5)#1-Nd(1)-O(1)	148.21(10)	O(8)-Nd(1)-O(1)	117.08(9)
O(6)-Nd(1)-O(1)	102.55(10)	O(1W)-Nd(1)-O(1)	69.66(10)
O(10)-Nd(1)-O(1)	66.35(10)	O(1)-Nd(1)-O(2)	49.18(9)
O(4)#2-Nd(1)-O(1)	119.85(9)	O(3)#2-Nd(1)-O(1)	73.40(9)
O(2W)-Nd(2)-O(7)#3	97.42(11)	O(9)#3-Nd(2)-O(11)	75.24(10)
O(2W)-Nd(2)-O(3W)	78.48(11)	O(1)-Nd(2)-O(11)	111.17(10)
O(7)#3-Nd(2)-O(3W)	132.03(10)	O(2W)-Nd(2)-O(12)#4	120.13(10)
O(2W)-Nd(2)-O(13)#4	68.58(10)	O(7)#3-Nd(2)-O(12)#4	73.55(9)
O(7)#3-Nd(2)-O(13)#4	74.76(11)	O(3W)-Nd(2)-O(12)#4	148.99(10)

O(3W)-Nd(2)-O(13)#4	140.68(11)	O(13)#4-Nd(2)-O(12)#4	51.76(9)
O(2W)-Nd(2)-O(9)#3	77.20(11)	O(9)#3-Nd(2)-O(12)#4	137.94(9)
O(7)#3-Nd(2)-O(9)#3	65.96(9)	O(1)-Nd(2)-O(12)#4	80.32(9)
O(3W)-Nd(2)-O(9)#3	66.56(10)	O(11)-Nd(2)-O(12)#4	81.90(10)
O(13)#4-Nd(2)-O(9)#3	123.02(11)	O(2W)-Nd(2)-O(10)	142.69(10)
O(2W)-Nd(2)-O(1)	90.13(10)	O(7)#3-Nd(2)-O(10)	117.75(9)
O(7)#3-Nd(2)-O(1)	153.11(9)	O(3W)-Nd(2)-O(10)	69.03(10)
O(3W)-Nd(2)-O(1)	74.74(10)	O(13)#4-Nd(2)-O(10)	129.97(9)
O(13)#4-Nd(2)-O(1)	84.22(11)	O(9)#3-Nd(2)-O(10)	104.88(10)
O(9)#3-Nd(2)-O(1)	140.90(9)	O(1)-Nd(2)-O(10)	64.44(9)
O(2W)-Nd(2)-O(11)	152.44(10)	O(11)-Nd(2)-O(10)	47.80(9)
O(7)#3-Nd(2)-O(11)	71.68(11)	O(12)#4-Nd(2)-O(10)	83.79(9)
O(3W)-Nd(2)-O(11)	90.12(11)	O(9)#3-Nd(2)-O(11)	75.24(10)
	Compo	ound 5 ^e	
Sm(1)–O(5)#1	2.341(4)	Sm(2)–O(2W)	2.390(4)
Sm(1)–O(11)	2.428(4)	Sm(2)–O(7)#3	2.409(4)
Sm(1)–O(8)	2.433(4)	Sm(2)-O(1W)	2.410(4)
Sm(1)-O(3W)	2.439(4)	Sm(2)–O(2)	2.426(4)
Sm(1)–O(6)	2.454(4)	Sm(2)-O(9)#3	2.436(4)
Sm(1)-O(4)#2	2.492(4)	Sm(2)-O(13)#4	2.443(4)
Sm(1)–O(1)	2.495(4)	Sm(2)-O(10)	2.467(4)
Sm(1)-O(3)#2	2.575(4)	Sm(2)-O(12)#4	2.552(4)
Sm(1)–O(2)	2.784(4)	O(6)-Sm(1)-O(1)	69.43(13)
O(5)#1-Sm(1)-O(11)	92.75(15)	O(4)#2-Sm(1)-O(1)	120.59(13)
O(5)#1-Sm(1)-O(8)	91.25(16)	O(5)#1-Sm(1)-O(3)#2	131.95(14)
O(11)-Sm(1)-O(8)	153.97(13)	O(11)-Sm(1)-O(3)#2	82.36(12)
O(5)#1-Sm(1)-O(3W)	81.17(15)	O(8)-Sm(1)-O(3)#2	75.92(13)
O(11)-Sm(1)-O(3W)	70.72(13)	O(3W)-Sm(1)-O(3)#2	138.83(14)
O(8)-Sm(1)-O(3W)	135.29(13)	O(6)-Sm(1)-O(3)#2	134.41(12)
O(5)#1-Sm(1)-O(6)	75.25(14)	O(4)#2-Sm(1)-O(3)#2	51.64(12)
O(11)-Sm(1)-O(6)	139.13(13)	O(1)-Sm(1)-O(3)#2	74.80(13)
O(8)-Sm(1)-O(6)	66.57(13)	O(5)#1-Sm(1)-O(2)	148.00(15)

O(3W) - Sm(1) - O(6)	68.90(13)	O(11)-Sm(1)-O(2)	68.09(12)
O(5)#1-Sm(1)-O(4)#2	80.31(14)	O(8)-Sm(1)-O(2)	117.40(13)
O(11)-Sm(1)-O(4)#2	82.97(14)	O(3W)-Sm(1)-O(2)	68.59(12)
O(8)-Sm(1)-O(4)#2	72.39(14)	O(6)-Sm(1)-O(2)	102.10(13)
O(3W)-Sm(1)-O(4)#2	146.85(13)	O(4)#2-Sm(1)-O(2)	120.14(13)
O(6)-Sm(1)-O(4)#2	131.07(15)	O(1)-Sm(1)-O(2)	48.91(13)
O(3)#2-Sm(1)-O(2)	72.74(12)	O(9)#3-Sm(2)-O(13)#4	123.93(16)
O(2W)-Sm(2)-O(7)#3	98.82(16)	O(2W)-Sm(2)-O(10)	154.12(16)
O(2W)-Sm(2)-O(1W)	79.09(15)	O(7)#3-Sm(2)-O(10)	73.70(15)
O(7)#3-Sm(2)-O(1W)	132.80(14)	O(1W)-Sm(2)-O(10)	88.00(15)
O(2W)-Sm(2)-O(2)	90.75(15)	O(2)-Sm(2)-O(10)	107.26(15)
O(7)#3-Sm(2)-O(2)	152.68(14)	O(9)#3-Sm(2)-O(10)	76.50(15)
O(1W)-Sm(2)-O(2)	74.04(14)	O(13)#4-Sm(2)-O(10)	129.84(15)
O(2W)-Sm(2)-O(9)#3	77.80(15)	O(2W)-Sm(2)-O(12)#4	120.78(14)
O(7)#3-Sm(2)-O(9)#3	66.75(14)	O(7)#3-Sm(2)-O(12)#4	73.96(14)
O(1W)-Sm(2)-O(9)#3	66.79(15)	O(1W)-Sm(2)-O(12)#4	146.87(15)
O(2)-Sm(2)-O(9)#3	140.55(14)	O(2)-Sm(2)-O(12)#4	79.15(14)
O(2W)-Sm(2)-O(13)#4	68.88(14)	O(9)#3-Sm(2)-O(12)#4	138.93(13)
O(7)#3-Sm(2)-O(13)#4	75.23(15)	O(13)#4-Sm(2)-O(12)#4	52.24(13)
O(1W)-Sm(2)-O(13)#4	141.12(14)	O(10)-Sm(2)-O(12)#4	81.65(14)
O(2)-Sm(2)-O(13)#4	84.66(15)		
	Compo	bund 6 ^f	

Eu(1)-O(5)#1	2.313(3)	Eu(1)–O(2)	2.459(3)
Eu(1)–O(10)	2.379(3)	Eu(1)-O(4)#2	2.487(3)
Eu(1)–O(8)	2.422(3)	Eu(1)-O(3)#2	2.555(3)
Eu(1)–O(1W)	2.429(3)	Eu(1)–O(1)	2.852(3)
Eu(1)–O(6)	2.448(3)	Eu(2)–O(11)	2.408(4)
Eu(2)–O(2W)	2.369(3)	Eu(2)-O(13)#4	2.428(4)
Eu(2)-O(7)#3	2.399(3)	Eu(2)-O(9)#3	2.428(3)
Eu(2)–O(1)	2.403(3)	Eu(2)-O(12)#4	2.539(3)
Eu(2)–O(3W)	2.410(3)	O(1W)-Eu(1)-O(4)#2	146.97(11)
O(5)#1-Eu(1)-O(10)	91.83(13)	O(6)-Eu(1)-O(4)#2	131.84(10)

O(5)#1-Eu(1)-O(8)	90.91(12)	O(2)-Eu(1)-O(4)#2	120.89(10)
O(10)–Eu(1)–O(8)	152.66(12)	O(5)#1-Eu(1)-O(3)#2	132.23(12)
O(5)#1-Eu(1)-O(1W)	82.21(12)	O(10)-Eu(1)-O(3)#2	81.65(11)
O(10)-Eu(1)-O(1W)	71.40(12)	O(8)-Eu(1)-O(3)#2	76.45(10)
O(8)–Eu(1)–O(1W)	135.88(11)	O(1W)-Eu(1)-O(3)#2	137.28(11)
O(5)#1-Eu(1)-O(6)	75.15(11)	O(6)-Eu(1)-O(3)#2	135.08(10)
O(10)–Eu(1)–O(6)	139.52(11)	O(2)-Eu(1)-O(3)#2	75.00(11)
O(8)–Eu(1)–O(6)	67.16(10)	O(4)#2-Eu(1)-O(3)#2	51.71(10)
O(1W)–Eu(1)–O(6)	68.96(11)	O(5)#1-Eu(1)-O(1)	148.13(11)
O(5)#1-Eu(1)-O(2)	144.35(11)	O(10)-Eu(1)-O(1)	70.06(12)
O(10)–Eu(1)–O(2)	117.88(12)	O(8)–Eu(1)–O(1)	117.38(10)
O(8)–Eu(1)–O(2)	71.93(11)	O(1W)-Eu(1)-O(1)	67.43(10)
O(1W)-Eu(1)-O(2)	88.83(11)	O(6)-Eu(1)-O(1)	101.36(10)
O(6)–Eu(1)–O(2)	69.44(10)	O(2)–Eu(1)–O(1)	48.21(9)
O(5)#1-Eu(1)-O(4)#2	80.52(11)	O(4)#2-Eu(1)-O(1)	120.21(9)
O(10)-Eu(1)-O(4)#2	81.21(12)	O(3)#2-Eu(1)-O(1)	72.54(10)
O(8)-Eu(1)-O(4)#2	72.43(11)	O(11)-Eu(2)-O(13)#4	130.81(11)
O(2W)-Eu(2)-O(7)#3	100.73(11)	O(2W)–Eu(2) O(9)#3	78.50(11)
O(2W)-Eu(2)-O(1)	90.74(10)	O(7)#3-Eu(2)-O(9)#3	67.03(10)
O(7)#3-Eu(2)-O(1)	152.53(11)	O(1)-Eu(2)-O(9)#3	140.25(11)
O(2W)-Eu(2)-O(3W)	79.34(11)	O(3W)-Eu(2)-O(9)#3	67.23(11)
O(7)#3-Eu(2)-O(3W)	133.21(11)	O(11)-Eu(2)-O(9)#3	77.77(12)
O(1)-Eu(2)-O(3W)	73.23(11)	O(13)#4-Eu(2)-O(9)#3	124.70(12)
O(2W)-Eu(2)-O(11)	155.42(12)	O(2W)-Eu(2)-O(12)#4	121.18(11)
O(7)#3-Eu(2)-O(11)	75.63(12)	O(7)#3-Eu(2)-O(12)#4	74.30(10)
O(1)-Eu(2)-O(11)	103.53(11)	O(1)-Eu(2)-O(12)#4	78.39(11)
O(3W)-Eu(2)-O(11)	85.69(12)	O(3W)-Eu(2)-O(12)#4	145.20(10)
O(2W)-Eu(2)-O(13)#4	69.51(11)	O(11)-Eu(2)-O(12)#4	81.75(12)
O(7)#3-Eu(2)-O(13)#4	75.97(12)	O(13)#4-Eu(2)-O(12)#4	52.18(10)
O(1)-Eu(2)-O(13)#4	85.04(12)	O(9)#3-Eu(2)-O(12)#4	139.56(11)
O(3W)-Eu(2)-O(13)#4	141.62(12)		

Compound 7^g

Gd(1)-O(5)#1	2.319(4)	Gd(1)-O(2)	2.436(4)
Gd(1)-O(10)	2.365(4)	Gd(1)-O(4)#2	2.468(4)
Gd(1)–O(8)	2.405(4)	Gd(1)-O(3)#2	2.537(3)
Gd(1)-O(1W)	2.407(4)	Gd(2)-O(3W)	2.395(4)
Gd(1)–O(6)	2.433(4)	Gd(2)-O(9)#3	2.410(4)
Gd(2)–O(2W)	2.345(4)	Gd(2)-O(13)#4	2.422(4)
Gd(2)–O(1)	2.384(4)	Gd(2)-O(12)#4	2.530(4)
Gd(2)-O(7)#3	2.389(4)	Gd(2)–O(11)	2.391(4)
O(10)-Gd(1)-O(3)#2	80.90(13)	O(5)#1-Gd(1)-O(10)	91.95(15)
O(8)-Gd(1)-O(3)#2	77.38(12)	O(1W)-Gd(1)-O(3)#2	135.62(13)
O(5)#1-Gd(1)-O(8)	90.62(14)	O(6)-Gd(1)-O(3)#2	135.69(12)
O(10)-Gd(1)-O(8)	152.42(14)	O(2)-Gd(1)-O(3)#2	74.56(12)
O(5)#1-Gd(1)-O(1W)	83.04(14)	O(4)#2-Gd(1)-O(3)#2	52.29(12)
O(10)-Gd(1)-O(1W)	71.78(14)	O(8)-Gd(1)-O(6)	67.25(12)
O(8)-Gd(1)-O(1W)	135.76(14)	O(1W)-Gd(1)-O(6)	68.87(13)
O(5)#1-Gd(1)-O(6)	74.57(14)	O(5)#1-Gd(1)-O(2)	144.47(15)
O(10)-Gd(1)-O(6)	139.56(13)	O(10)-Gd(1)-O(2)	117.53(14)
O(8)-Gd(1)-O(2)	72.56(13)	O(8)-Gd(1)-O(4)#2	72.85(14)
O(1W)-Gd(1)-O(2)	87.72(13)	O(1W)-Gd(1)-O(4)#2	147.26(14)
O(6)-Gd(1)-O(2)	70.09(13)	O(6)-Gd(1)-O(4)#2	132.25(13)
O(5)#1-Gd(1)-O(4)#2	80.84(13)	O(2)-Gd(1)-O(4)#2	121.13(12)
O(10)-Gd(1)-O(4)#2	80.47(14)	O(3W)-Gd(2)-O(9)#3	67.28(13)
O(5)#1-Gd(1)-O(3)#2	133.13(13)	O(2W)-Gd(2)-O(13)#4	69.56(13)
O(2W)-Gd(2)-O(1)	91.67(14)	O(1)-Gd(2)-O(13)#4	85.01(14)
O(2W)-Gd(2)-O(7)#3	100.61(14)	O(7)#3-Gd(2)-O(13)#4	76.65(14)
O(1)-Gd(2)-O(7)#3	152.57(13)	O(11)-Gd(2)-O(13)#4	131.71(13)
O(2W)-Gd(2)-O(11)	155.85(16)	O(3W)-Gd(2)-O(13)#4	141.89(14)
O(1)-Gd(2)-O(11)	100.68(14)	O(9)#3-Gd(2)-O(13)#4	125.07(14)
O(7)#3-Gd(2)-O(11)	77.63(14)	O(2W)-Gd(2)-O(12)#4	121.96(14)
O(2W)-Gd(2)-O(3W)	80.27(13)	O(1)-Gd(2)-O(12)#4	77.92(13)
O(1)-Gd(2)-O(3W)	72.84(14)	O(7)#3-Gd(2)-O(12)#4	74.76(13)
O(7)#3-Gd(2)-O(3W)	133.16(14)	O(11)-Gd(2)-O(12)#4	81.20(13)

O(11)-Gd(2)-O(3W)	83.65(14)	O(3W)-Gd(2)-O(12)#4	143.78(13)
O(2W)-Gd(2)-O(9)#3	77.87(15)	O(9)#3-Gd(2)-O(12)#4	140.11(12)
O(1)-Gd(2)-O(9)#3	139.90(12)	O(13)#4-Gd(2)-O(12)#4	52.86(12)
O(7)#3-Gd(2)-O(9)#3	67.24(13)	O(11)-Gd(2)-O(9)#3	79.36(15)
	Comp	ound 8 ^h	
Tb(1)-O(2W)	2.328(3)	Tb(1)-O(1W)	2.388(3)
Tb(1)-O(11)#1	2.353(3)	Tb(1)–O(8)	2.394(3)
Tb(1)-O(6)	2.366(3)	Tb(1)-O(1)	2.408(4)
Tb(1)-O(4)#2	2.369(3)	Tb(1)-O(2)	2.513(3)
Tb(2)-O(14)#3	2.304(3)	Tb(2)-O(10)	2.412(3)
Tb(2)-O(3)#3	2.343(3)	Tb(2)–O(7)	2.423(3)
Tb(2)–O(3W)	2.387(3)	Tb(2)-O(13)#4	2.443(3)
Tb(2)-O(9)	2.388(3)	Tb(2)-O(12)#4	2.518(3)
O(2W)-Tb(1)-O(6)	102.30(12)	O(2W)–Tb(1)–O(1)	69.46(11)
O(11)#1-Tb(1)-O(6)	151.79(11)	O(11)#1-Tb(1)-O(1)	84.84(12)
O(2W)-Tb(1)-O(4)#2	156.49(12)	O(6)-Tb(1)-O(1)	76.80(12)
O(11)#1-Tb(1)-O(4)#2	98.90(12)	O(4)#2-Tb(1)-O(1)	132.44(11)
O(6)-Tb(1)-O(4)#2	78.85(12)	O(1W)-Tb(1)-O(1)	141.98(11)
O(2W)-Tb(1)-O(1W)	80.15(12)	O(8)–Tb(1)–O(1)	125.02(13)
O(11)#1-Tb(1)-O(1W)	73.00(11)	O(2W)-Tb(1)-O(2)	122.20(11)
O(6)-Tb(1)-O(1W)	133.45(10)	O(11)#1-Tb(1)-O(2)	77.28(11)
O(4)#2-Tb(1)-O(1W)	82.31(12)	O(6)-Tb(1)-O(2)	74.58(10)
O(2W)-Tb(1)-O(8)	78.62(12)	O(4)#2-Tb(1)-O(2)	80.99(11)
O(11)#1-Tb(1)-O(8)	140.20(12)	O(1W)-Tb(1)-O(2)	142.99(11)
O(6)-Tb(1)-O(8)	67.63(10)	O(8)–Tb(1)–O(2)	140.30(10)
O(4)#2-Tb(1)-O(8)	80.26(12)	O(1)–Tb(1)–O(2)	53.40(11)
O(1W)-Tb(1)-O(8)	67.44(11)	O(2W)-Tb(1)-O(1)	69.46(11)
O(14)#3-Tb(2)-O(3)#3	91.62(12)	O(10)-Tb(2)-O(7)	70.67(11)
O(14)#3-Tb(2)-O(3W)	84.05(13)	O(14)#3-Tb(2)-O(13)#4	80.79(12)
O(3)#3-Tb(2)-O(3W)	72.37(11)	O(3)#3-Tb(2)-O(13)#4	79.39(12)
O(14)#3-Tb(2)-O(9)	90.56(12)	O(3W)-Tb(2)-O(13)#4	147.42(11)
O(3)#3-Tb(2)-O(9)	151.56(12)	O(9)-Tb(2)-O(13)#4	72.98(11)

O(3W)-Tb(2)-O(9)	136.03(10)	O(10)-Tb(2)-O(13)#4	121.54(10)
O(14)#3-Tb(2)-O(10)	145.30(11)	O(7)-Tb(2)-O(13)#4	132.80(11)
O(3)#3-Tb(2)-O(10)	116.95(12)	O(14)#3-Tb(2)-O(12)#4	133.41(12)
O(3W)-Tb(2)-O(10)	86.36(12)	O(3)#3-Tb(2)-O(12)#4	80.34(10)
O(9)-Tb(2)-O(10)	73.77(11)	O(3W)-Tb(2)-O(12)#4	134.34(11)
	Comp	ound 9 ⁱ	
Dy(1)-O(2W)	2.319(4)	Dy(1)-O(1W)	2.385(4)
Dy(1)-O(12)#1	2.324(4)	Dy(1)-O(8)	2.388(4)
Dy(1)-O(1)	2.348(4)	Dy(1)-O(4)#2	2.391(4)
Dy(1)-O(6)	2.362(3)	Dy(1)-O(3)#2	2.503(4)
Dy(2)-O(14)#3	2.292(4)	Dy(2)-O(13)#5	2.389(3)
Dy(2)-O(2)#4	2.324(4)	Dy(2)-O(7)	2.412(4)
Dy(2)-O(3W)	2.381(4)	Dy(2)-O(11)	2.447(4)
Dy(2)-O(9)	2.378(3)	Dy(2)-O(10)	2.504(4)
O(2W)-Dy(1)-O(12)#1	90.91(14)	O(12)#1-Dy(1)-O(1W)	72.76(13)
O(2W)-Dy(1)-O(1)	156.82(15)	O(1)-Dy(1)-O(1W)	81.89(13)
O(12)#1-Dy(1)-O(1)	97.87(14)	O(6)-Dy(1)-O(1W)	133.65(13)
O(2W)-Dy(1)-O(6)	102.36(14)	O(2W)-Dy(1)-O(8)	78.51(14)
O(12)#1-Dy(1)-O(6)	151.74(13)	O(12)#1-Dy(1)-O(8)	140.02(13)
O(1)-Dy(1)-O(6)	79.62(13)	O(1)-Dy(1)-O(8)	81.03(14)
O(2W)-Dy(1)-O(1W)	80.32(13)	O(6)-Dy(1)-O(8)	67.84(12)
O(1W)-Dy(1)-O(8)	67.51(13)	O(6)-Dy(1)-O(4)#2	76.61(13)
O(2W)-Dy(1)-O(4)#2	69.55(14)	O(1W)-Dy(1)-O(4)#2	142.18(13)
O(12)#1-Dy(1)-O(4)#2	85.09(14)	O(8)-Dy(1)-O(4)#2	124.97(14)
O(1)-Dy(1)-O(4)#2	132.35(14)	O(2W)-Dy(1)-O(3)#2	122.30(13)
O(12)#1-Dy(1)-O(3)#2	77.19(12)	O(2)#4-Dy(2)-O(7)	139.66(13)
O(14)#3-Dy(2)-O(2)#4	91.79(15)	O(3W)-Dy(2)-O(7)	69.07(13)
O(14)#3-Dy(2)-O(3W)	84.78(14)	O(9)-Dy(2)-O(7)	67.79(12)
O(2)#4-Dy(2)-O(3W)	72.01(14)	O(13)#5-Dy(2)-O(7)	70.94(13)
O(14)#3-Dy(2)-O(9)	90.61(14)	O(14)#3-Dy(2)-O(11)	80.97(14)
O(2)#4-Dy(2)-O(9)	151.70(14)	O(2)#4-Dy(2)-O(11)	79.43(13)
O(3W)-Dy(2)-O(9)	136.27(13)	O(3W)-Dy(2)-O(11)	147.55(12)

O(14)#3-Dy(2)-O(13)#5	145.50(14)	O(9)–Dy(2)–O(11)	73.13(12)
O(2)#4-Dy(2)-O(13)#5	116.40(13)	O(13)#5-Dy(2)-O(11)	121.57(12)
O(3W)-Dy(2)-O(13)#5	85.62(13)	O(7)-Dy(2)-O(11)	133.10(12)
O(9)-Dy(2)-O(13)#5	74.06(12)	O(14)#3-Dy(2)-O(10)	133.55(13)
O(14)#3-Dy(2)-O(7)	74.68(14)	O(2)#4-Dy(2)-O(10)	79.98(13)
O(13)#5-Dy(2)-O(10)	74.17(12)	O(3W)-Dy(2)-O(10)	133.25(13)
O(7)-Dy(2)-O(10)	136.30(11)	O(9)-Dy(2)-O(10)	78.01(12)
O(11)-Dy(2)-O(10)	52.59(12)		

Compound 10 ^{<i>i</i>}					
Er(1)-O(11)#1	2.292(6)	Er(1)–O(8)	2.375(5)		
Er(1)-O(1W)	2.294(6)	Er(1)-O(4)#2	2.380(6)		
Er(1)–O(1)	2.330(6)	Er(1)-O(2W)	2.380(5)		
Er(1)–O(6)	2.334(6)	Er(1)-O(3)#2	2.495(5)		
Er(2)-O(14)#3	2.268(6)	Er(2)–O(10)	2.359(6)		
Er(2)–O(2)#4	2.302(6)	Er(2)–O(7)	2.400(5)		
Er(2)–O(9)	2.346(5)	Er(2)–O(13)#5	2.428(5)		
Er(2)–O(3W)	2.354(5)	Er(2)-O(12)#5	2.488(5)		
O(11)#1-Er(1)-O(1W)	90.9(2)	O(1)-Er(1)-O(4)#2	132.75(18)		
O(11)#1-Er(1)-O(1)	96.8(2)	O(6)-Er(1)-O(4)#2	76.5(2)		
O(1W)-Er(1)-O(1)	156.5(2)	O(8)-Er(1)-O(4)#2	125.2(2)		
O(11)#1-Er(1)-O(6)	151.28(18)	O(11)#1-Er(1)-O(2W)	72.91(19)		
O(1W)-Er(1)-O(6)	102.7(2)	O(1W)-Er(1)-O(2W)	80.4(2)		
O(1)-Er(1)-O(6)	80.7(2)	O(1)-Er(1)-O(2W)	80.80(19)		
O(11)#1-Er(1)-O(8)	140.13(19)	O(6)-Er(1)-O(2W)	133.86(18)		
O(1W)-Er(1)-O(8)	78.4(2)	O(8)-Er(1)-O(2W)	67.49(19)		
O(1)-Er(1)-O(8)	81.5(2)	O(4)#2-Er(1)-O(2W)	142.41(19)		
O(6)-Er(1)-O(8)	68.18(18)	O(11)#1-Er(1)-O(3)#2	77.02(18)		
O(11)#1-Er(1)-O(4)#2	84.8(2)	O(1W)-Er(1)-O(3)#2	122.5(2)		
O(1W)-Er(1)-O(4)#2	69.88(18)	O(1)-Er(1)-O(3)#2	80.88(19)		
O(6) -Er(1) -O(3)#2	74.34(18)	O(4)#2-Er(1)-O(3)#2	53.35(18)		
O(8) Er(1)–O(3)#2	140.59(19)	O(2W)-Er(1)-O(3)#2	142.38(19)		
O(14)#3-Er(2)-O(2)#4	92.0(2)	O(3W)-Er(2)-O(7)	68.81(19)		

O(14)#3-Er(2)-O(9)	90.3(2)	O(10)–Er(2)–O(7)	71.50(18)			
O(2)#4-Er(2)-O(9)	151.31(19)	O(14)#3-Er(2)-O(13)#5	80.54(19)			
O(14)#3-Er(2)-O(3W)	85.6(2)	O(2)#4-Er(2)-O(13)#5	78.9(2)			
O(2)#4-Er(2)-O(3W)	72.10(19)	O(9)-Er(2)-O(13)#5	73.25(19)			
O(9)–Er(2)–O(3W)	136.58(18)	O(3W)-Er(2)-O(13)#5	147.3(2)			
O(14)#3-Er(2) -O(10)	146.34(19)	O(10)-Er(2)-O(13)#5	122.40(17)			
O(2)#4-Er(2)-O(10)	115.0(2)	O(7)-Er(2)-O(13)#5	133.8(2)			
O(9)–Er(2)–O(10)	75.63(19)	O(14)#3-Er(2)-O(12)#5	133.89(19)			
O(3W)–Er(2)–O(10)	84.29(19)	O(2)#4-Er(2)-O(12)#5	79.53(17)			
O(14)#3-Er(2)-O(7)	74.9(2)	O(9)-Er(2)-O(12)#5	78.33(17)			
O(2)#4-Er(2)-O(7)	139.47(18)	O(3W)-Er(2 -O(12)#5	132.13(19)			
O(9)–Er(2)–O(7)	68.40(18)	O(10)-Er(2)-O(12)#5	73.71(17)			
O(13)#5-Er(2)-O(12)#5	53.36(18)	O(7)-Er(2)-O(12)#5	136.49(17)			
Compound 11 ^k						
Yb(1)–O(1W)	2.258(3)	Yb(1)-O(2W)	2.337(3)			
Yb(1)-O(1)	2.262(3)	Yb(1)-O(13)#1	2.357(4)			
Yb(1)-O(10)	2.294(3)	Yb(1)-O(8)	2.359(3)			
Yb(1)–O(6)	2.318(3)	Yb(1)-O(12)#1	2.475(3)			
Yb(2)-O(5)#2	2.238(3)	Yb(2)-O(9)#3	2.331(3)			
Yb(2)–O(11)	2.290(3)	Yb(2)-O(7)#3	2.379(3)			
Yb(2)-O(3W)	2.322(3)	Yb(2)-O(4)#4	2.399(3)			
Yb(2)–O(2)	2.328(3)	Yb(2)-O(3)#4	2.468(3)			
O(1W)-Yb(1)-O(1)	90.33(12)	O(2W)-Yb(1)-O(13)#1	142.06(11)			
O(1W)-Yb(1)-O(10)	156.69(12)	O(1W)-Yb(1)-O(8)	78.46(13)			
O(1)-Yb(1)-O(10)	96.48(12)	O(1)-Yb(1)-O(8)	140.13(11)			
O(1W)-Yb(1)-O(6)	102.91(12)	O(10)-Yb(1)-O(8)	82.10(12)			
O(1)-Yb(1)-O(6)	150.92(11)	O(6)-Yb(1)-O(8)	68.65(11)			
O(10)-Yb(1)-O(6)	81.57(12)	O(2W)-Yb(1)-O(8)	67.48(11)			
O(1W)-Yb(1)-O(2W)	79.96(12)	O(13)#1-Yb(1)-O(8)	125.44(12)			
O(1)-Yb(1)-O(2W)	72.94(11)	O(1W)-Yb(1)-O(12)#1	123.09(12)			
O(10)-Yb(1)-O(2W)	80.79(12)	O(1)-Yb(1)-O(12)#1	76.78(11)			
O(6)-Yb(1)-O(2W)	134.40(11)	O(10)-Yb(1)-O(12)#1	80.21(12)			

O(1W)-Yb(1)-O(13)#1	70.04(12)	O(6)-Yb(1)-O(12)#1	74.29(11)
O(1)-Yb(1)-O(13)#1	84.29(12)	O(2W)-Yb(1)-O(12)#1	141.91(11)
O(10)-Yb(1)-O(13)#1	132.72(11)	O(13)#1-Yb(1)-O(12)#1	53.81(11)
O(6)-Yb(1)-O(13)#1	76.36(12)	O(8)-Yb(1)-O(12)#1	140.78(10)
O(5)#2-Yb(2)-O(11)	92.23(13)	O(9)#3-Yb(2)-O(7)#3	68.52(10)
O(5)#2-Yb(2)-O(3W)	85.56(13)	O(5)#2-Yb(2)-O(4)#4	80.49(12)
O(11)-Yb(2)-O(3W)	72.23(12)	O(11)-Yb(2)-O(4)#4	78.90(12)
O(5)#2-Yb(2)-O(2)	147.21(12)	O(3W)-Yb(2)-O(4)#4	147.31(11)
O(11)-Yb(2)-O(2)	113.55(12)	O(2)-Yb(2)-O(4)#4	122.67(10)
O(3W)-Yb(2)-O(2)	83.66(12)	O(9)#3-Yb(2)-O(4)#4	73.94(11)
O(5)#2-Yb(2)-O(9)#3	91.29(13)	O(7)#3-Yb(2)-O(4)#4	134.21(11)
O(11)-Yb(2)-O(9)#3	151.62(12)	O(5)#2-Yb(2)-O(3)#4	134.13(12)
O(3W)-Yb(2)-O(9)#3	136.13(11)	O(11)-Yb(2)-O(3)#4	79.04(11)
O(2)-Yb(2)-O(9)#3	75.73(12)	O(3W)-Yb(2)-O(3)#4	131.78(11)
O(5)#2-Yb(2)-O(7)#3	75.21(12)	O(2)-Yb(2)-O(3)#4	73.32(11)
O(11)-Yb(2)-O(7)#3	139.34(11)	O(9)#3-Yb(2)-O(3)#4	78.37(10)
O(3W)-Yb(2)-O(7)#3	68.40(11)	O(7)#3-Yb(2)-O(3)#4	136.66(10)
O(2)-Yb(2)-O(7)#3	72.03(11)	O(4)#4-Yb(2)-O(3)#4	53.66(11)

Symmetry codes: a #1 - x, - y, 1 - z; #2 x, y, 1 + z; #3 1 - x, - y, 1 - z. b #1 2 - x, 1 - y, 1 - z; #2 3 - x, 1 - y, - z; #3 2 - x, 1 - y, - z. c #11 - x, 2 - y, 1 - z; #2 1 + x, y, z; #3 1 - x, 1 - y, 1 - z; #4 - x, 2 - y, 1 - z. d #11 - x, 2 - y, 1 - z; #2 2 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 2 - y, 1 - z. e #1 1 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 1 - y, 1 - z; #2 - x, 2 - y, 1 - z; #3 - 1 + x, y, z; #4 - x, 1 - y, 1 - z; #2 - x, 2 - y, 1 - z; #3 - 1 + x, y, z; #4 - x, 1 - y, 1 - z; #4 3 - x, -y, 1 - z; #2 - x, 1 - y, 1 - z; #3 - 1 + x, 1 + y, z; #4 1 + x, y, z; #5 2 - x, 1 - y, 1 - z; #6 - 1 + x, y, z. {}^{i}#1 1 + x, y, z; #1 1 + x, y, z; #3 1 - x, -y, -z; #3 1 - x, -y, -z; #4 - 1 + x, y, z. {}^{k}#1 2 - x, 1 - y, 1 - z; #2 3 - x, 1 - y, 1 - z; #3 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 1 - y, 1 - z; #3 - 1 + x, 1 + y, z; #4 1 + x, y, z; #5 2 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 2 - y, 1 - z; #3 - 1 + x, 1 + y, z; #4 1 + x, y, z; #5 2 - x, 1 - y, 1 - z; #6 - 1 + x, y, z. {}^{i}#1 1 + x, y, z; #2 2 - x, - y, - z; #3 1 - x, - y, - z; #4 - 1 + x, y, z. {}^{k}#1 2 - x, 1 - y, 1 - z; #2 3 - x, 1 - y, 1 - z; #3 1 + x, y, z; #4 2 - x, 2 - y, 1 - z; #3 1 + x, y, z. {}^{i}#1 1 + x, y, z. i #1 1 + x, y. z. i

Tuble 54 Geometrical parameters of mydrogen bonds in compound 1 (in 71 and deg	Table S2: Geometrical	parameters of hydrogen b	conds in compound 1	(in Å a	and deg)
--	-----------------------	--------------------------	---------------------	---------	----------

D–H···A	d(D-H)	d(H····A)	d(D····A)	<dha< th=""><th>Symmetry operation for A</th></dha<>	Symmetry operation for A
O(1W)–H(1WA)····O(4)	0.720	2.084	2.722	148.11	$1-x,-y,\ 1-z$
O(1W)-H(1WB)O(4W)	0.781	1.942	2.704	165.10	x, -1 + y, z
O(2W)–H(2WA)····O(3W)	0.850	2.061	2.856	154.72	-x, 1-y, 1-z
O(2W)–H(2WB)····O(7)	0.850	1.910	2.740	122.19	-1 + x, y, z
O(3W)–H(3WA)····O(5)	0.851	2.204	3.055	179.48	1-x, 1-y, -z
O(3W)–H(3WB)····O(4)	0.720	2.102	2.784	158.49	<i>x</i> , 1 + <i>y</i> , <i>z</i>
O(4W)–H(4WA)····O(5W)	0.905	2.404	3.309	178.54	1 - x, 1 - y, 1 - z
O(4W)–H(4WB)…O(3W)	0.784	2.193	2.756	129.16	<i>x</i> , <i>y</i> , 1 + <i>z</i>
O(5W)–H(5WB)····O(2W)	0.850	2.092	2.941	176.30	1 - x, 1 - y, 1 - z

Fig. S1 Hydrogen-bonding tape in **1** with two 16-membered water rings arranged alternately which was self-assembled from L^{2-} , water, and OX^{2-} . Symmetry codes: #3 1 - x, -y, 1 - z; #4 1 - x, 1 - y, 1 - z; #5 1 - x, 1 - y, -z; #6 1 - x, -y, -z; #7 x, -1 + y, z; #8 x, -1 + y, -1 + z; #9 x, y, -1 + z; #10 1 + x, y, z; #11 2 - x, 1 - y, 1 - z;#12 2 - x, 1 - y, -z.

Fig. S2 Views of hydrogen-bond interactions in 3.

Fig. S3 Local coordination environment of **6** with 30% thermal ellipsoids.

Fig. S4 Local coordination environment of 8 with 30% thermal ellipsoids.

Fig. S5 Thermogravimetric curve of the compounds 1, 3, 6, and 8.

Fig. S6 Thermogravimetric curve of the compounds 2, 4, 5, 7 and 9–11.

Fig. S7 The simulated and experimental XRPD patterns for 1–2.

Fig. S8 The simulated and experimental XRPD patterns for **3–11**.