Supporting Information

Assembly of chainlike polyoxometalate-based lanthanide complexes in one-pot reaction system

Xiao-Jia Feng, ${ }^{a}$ Hua-Yan Han, ${ }^{a}$ Yong-Hui Wang, ${ }^{*}$ Lu-Lu Li, ${ }^{a}$ Yang-Guang Li, ${ }^{* a}$ and En-Bo Wang ${ }^{a}$

Contents

1. Orthogonal experiments for optimizing the synthetic conditions of compounds $\mathbf{1 - 3}$
2. Additional structural figures for compounds $\mathbf{1 - 3}$
3. Selected bond lengths and angles for compounds 1-3
4. Additional physical measurements for compounds 1-3

1. Orthogonal experiments for optimizing the synthetic conditions of compounds

1-3

Table S1a Orthogonal experiments for optimizing the synthetic conditions of 1-3 ${ }^{a, b}$

$T\left(70{ }^{\circ} \mathrm{C}\right), \mathrm{t}(1.0 \mathrm{~h}), \mathrm{pH}(1.0)$	$\boldsymbol{T}\left(90{ }^{\circ} \mathrm{C}\right), \boldsymbol{t}(1.5 \mathrm{~h}), \mathrm{pH}(1.0)$	$T\left(80{ }^{\circ} \mathrm{C}\right), \boldsymbol{t} \mathbf{(2 . 0 ~ h) , ~} \mathrm{pH}(\mathbf{1 . 0})$
$T\left(80{ }^{\circ} \mathrm{C}\right), t(1.0 \mathrm{~h}), \mathrm{pH}(1.5)^{\mathrm{c}}$	$\boldsymbol{T}\left(70^{\circ} \mathrm{C}\right), \boldsymbol{t}(1.5 \mathrm{~h}), \mathbf{p H}(1.5)^{\text {c }}$	$\boldsymbol{T}\left(90{ }^{\circ} \mathrm{C}\right), \boldsymbol{t}(2.0 \mathrm{~h}), \mathbf{p H}(1.5)^{\text {c }}$
$\boldsymbol{T}\left(90{ }^{\circ} \mathrm{C}\right), \boldsymbol{t}(\mathbf{1 . 0} \mathrm{h}), \mathrm{pH}(2.0)$	$\boldsymbol{T}\left(80{ }^{\circ} \mathrm{C}\right), \boldsymbol{t}(1.5 \mathrm{~h}), \mathbf{p H}(2.0)$	$\boldsymbol{T}\left(70{ }^{\circ} \mathrm{C}\right), \boldsymbol{t}(2.0 \mathrm{~h}), \mathbf{p H}(2.0)$

${ }^{a}$ In this experimental group, the three reaction solutions were fixed as follows: solution A ($\left.\left\{\mathrm{As}_{2} \mathrm{~W}_{19}\right\} 1.0 \mathrm{mmol}\right)$, solution $\mathrm{B}\left(\left\{\mathrm{Ln}^{3+}+\mathrm{Pro}\right\} 1.0 \mathrm{mmol}\right)$, solution $\mathrm{C}(\{\mathrm{NaCl}$ aq. $\} 1 \mathrm{M})$.
${ }^{b} \boldsymbol{T}=$ temperature, $\boldsymbol{t}=$ time, pH means the final pH of the reaction system.
${ }^{c}$ The experimental groups with blue background represent the isolation of crystalline compounds 1-3.

Table S1b Orthogonal experiments for optimizing the components in three solutions ${ }^{a, b}$

A (1.0 mmol), B (1.0 mmol), C (1.0M)	A ($\mathbf{2 . 0} \mathbf{~ m m o l}$), B ($\mathbf{1 . 5 ~ m m o l) , ~ C ~ (1 . 0 M) ~}$	A ($1.5 \mathbf{~ m m o l}$), B ($\mathbf{2 . 0 ~ m m o l) , ~ C ~ (1 . 0 M) ~}$
A (1.5 mmol), B (1.0 mmol), C ($\mathbf{2} .0 \mathrm{M}$)	A (1.0 mmol), B (1.5 mmol$),(2.0 \mathrm{M})^{\text {c }}$	A ($\mathbf{2 . 0} \mathbf{~ m m o l}$), B ($\mathbf{2 . 0 ~ m m o l) , ~ C ~ (~} 2.0 \mathrm{M}$)
A ($\mathbf{2 . 0 ~ m m o l) , ~ B ~ (1 . 0 ~ m m o l) , ~ C ~ (3 . 0 M) ~}$	A ($1.5 \mathbf{~ m m o l}$), B ($\mathbf{1 . 5 ~ m m o l) , ~ C ~ (3 . 0 M) ~}$	A (1.0 mmol), B (2.0 mmol), C (3.0M)

${ }^{a}$ In this experimental group, the reaction solutions were fixed as follows: $T=80^{\circ} \mathrm{C}, t=$ $1.5 \mathrm{~h}, \mathrm{pH}=1.5$.
${ }^{b} \mathbf{A}=\left\{\mathrm{As}_{2} \mathrm{~W}_{19}\right\}$ in 10 mL aqueous solution $\mathrm{A}(\mathrm{pH}=1.5) ; \mathbf{B}=\left\{\mathrm{Ln}^{3+}+\mathrm{Pro}\right\}$ in 5 mL aqueous solution $\mathrm{B} ; \mathbf{C}=\{\mathrm{NaCl}$ aq. $\}$ in 10 mL aqueous solution C .
${ }^{c}$ The experimental groups with blue background exhibits the best yield for crystalline compounds 1-3.

2. Additional structural figures for compounds 1 - 3

Fig. S1 ORTEP diagram of the basic structural unit in 1 with thermal ellipsoids at 30% probability. Hydrogen atoms, Na cations and crystalline water molecules are omitted for clarity. The disordered oxygen atoms in the polyoxoanion are shown with pink color and broken lines and the disordered W atoms and $\mathrm{W}-\mathrm{O}$ bonds are shown with grey color and broken lines, respectively.

Fig. S2 Structural comparison of the $\left\{\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}$ precursor (left) and the $\left\{\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{68}\right\}$ building block in compound $\mathbf{1}$ (right).

Fig. S3 ORTEP diagram of the basic structural unit in 2 with thermal ellipsoids at 30% probability. Hydrogen atoms, Na cations and crystalline water molecules are omitted for clarity. The disordered oxygen atoms in the polyoxoanion are shown with pink color and broken lines and the disordered W atoms and $\mathrm{W}-\mathrm{O}$ bonds are shown with grey color and broken lines, respectively.

Fig. S4. ORTEP diagram of the basic structural unit in $\mathbf{3}$ with thermal ellipsoids at 30% probability. Hydrogen atoms, Na cations and crystalline water molecules are omitted for clarity. The disordered oxygen atoms in the polyoxoanion are shown with pink color and broken lines and the disordered W atoms and $\mathrm{W}-\mathrm{O}$ bonds are shown with grey color and broken lines, respectively.

Fig. $\mathbf{S 5}$ (a) 3-D packing arrangement of 1 viewed along the a axis; (b) 3-D packing arrangement of 1 viewed along the b axis. (c) 3-D packing arrangement of $\mathbf{1}$ viewed along the c axis. The polyoxoanions are represented with polyhedra; Na ions and solvent water molecules are omitted for clarity.

Fig. S6 (a) 3-D packing arrangement of 2 viewed along the a axis. (b) 3-D packing arrangement of 2 viewed along the b axis. (c) 3-D packing arrangement of 2 viewed along the c axis. The polyoxoanions are represented with polyhedra; Na ions and solvent water molecules are omitted for clarity.

Fig. S7 (a) 3-D packing arrangement of $\mathbf{3}$ viewed along the a axis. (b) 3-D packing arrangement of $\mathbf{3}$ viewed along the b axis. (c) 3-D packing arrangement of $\mathbf{3}$ viewed along the c axis. The polyoxoanions are represented with polyhedra; Na ions and solvent water molecules are omitted for clarity.

3. Selected bond lengths and angles for compounds 1-3

Table S2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of compound $\mathbf{1}$

$\mathrm{Tb}(1)-\mathrm{O}(53)$	2.31(2)	$\mathrm{Tb}(1)-\mathrm{O}(75)$	2.35(2)	$\mathrm{Tb}(1)-\mathrm{O}(2 \mathrm{~W})$	2.44(3)
$\mathrm{Tb}(1)-\mathrm{O}(50) \# 1$	2.34(2)	$\mathrm{Tb}(1)-\mathrm{O}(41)$	2.35(2)	$\mathrm{Tb}(1)-\mathrm{O}(1 \mathrm{~W})$	2.46(3)
$\mathrm{Tb}(1)-\mathrm{O}(40)$	2.34(2)	$\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	2.44(2)	$\mathrm{Tb}(2)-\mathrm{O}(4 \mathrm{~W})$	2.45(3)
$\mathrm{Tb}(2)-\mathrm{O}(66)$	2.25(2)	$\mathrm{Tb}(2)-\mathrm{O}(12)$	2.32(2)	$\mathrm{Tb}(2)-\mathrm{O}(30) \# 1$	2.30(3)
$\mathrm{Tb}(2)-\mathrm{O}(1)$	2.27(2)	$\mathrm{Tb}(2)-\mathrm{O}(5 \mathrm{~W})$	2.36(3)	$\mathrm{Tb}(2)-\mathrm{O}(15)$	2.39(3)
$\mathrm{Tb}(3)-\mathrm{O}(12 \mathrm{~W})$	2.26(9)	$\mathrm{Tb}(3)-\mathrm{O}(7 \mathrm{~W})$	2.35(5)	$\mathrm{Tb}(3)-\mathrm{O}(9 \mathrm{~W})$	2.39(4)
Tb (3)-O(10W)	2.35 (8)	$\mathrm{Tb}(3)-\mathrm{O}(2)$	2.37(3)	$\mathrm{Tb}(3)-\mathrm{O}(11 \mathrm{~W})$	2.53(10)
$\mathrm{Tb}(3)-\mathrm{O}(8 \mathrm{~W})$	2.36(4)	$\mathrm{Tb}(3)-\mathrm{O}(4) \# 3$	2.42(2)		
$\mathrm{W}(6)-\mathrm{O}(66)$	1.76 (2)	$\mathrm{W}(6)-\mathrm{O}(47)$	1.88(2)	$\mathrm{W}(6)-\mathrm{O}(8)$	2.01(2)
$\mathrm{W}(6)-\mathrm{O}(6)$	1.79(3)	$\mathrm{W}(6)-\mathrm{O}(19)$	1.90(3)	$\mathrm{W}(6)-\mathrm{O}(79)$	2.22(2)
$\mathrm{W}(19)-\mathrm{O}(72)$	1.68(3)	$\mathrm{W}(19)-\mathrm{O}(38)$	1.91(2)	$\mathrm{W}(19)-\mathrm{O}(62)$	1.960(19)
$\mathrm{W}(19)-\mathrm{O}(57) \# 1$	1.84(2)	$\mathrm{W}(19)-\mathrm{O}(58)$	1.92(2)	$\mathrm{W}(19)-\mathrm{O}(61)$	2.41(2)
$\mathrm{W}(22)-\mathrm{O}(74)$	1.74(3)	$\mathrm{W}(22)-\mathrm{O}(53)$	1.83(2)	$\mathrm{W}(22)-\mathrm{O}(6)$	2.08(3)
$\mathrm{W}(22)-\mathrm{O}(30)$	1.76(3)	$\mathrm{W}(22)-\mathrm{O}(10)$	2.01(2)	$\mathrm{W}(22)-\mathrm{O}(26)$	2.349(5)
$\mathrm{O}(53)-\mathrm{Tb}(1)-\mathrm{O}(40)$	70.3(9)	$\mathrm{O}(66)-\mathrm{Tb}(2)-\mathrm{O}(1)$	73.9(8)	$\mathrm{O}(12 \mathrm{~W})-\mathrm{Tb}(3)-\mathrm{O}(10 \mathrm{~W})$	148(4)
$\mathrm{O}(53)-\mathrm{Tb}(1)-\mathrm{O}(50) \# 1$	76.0(8)	$\mathrm{O}(66)-\mathrm{Tb}(2)-\mathrm{O}(30) \# 1$	74.7(9)	$\mathrm{O}(12 \mathrm{~W})-\mathrm{Tb}(3)-\mathrm{O}(8 \mathrm{~W})$	108(3)
$\mathrm{O}(53)-\mathrm{Tb}(1)-\mathrm{O}(75)$	139.9(9)	$\mathrm{O}(66)-\mathrm{Tb}(2)-\mathrm{O}(12)$	126.1(10)	$\mathrm{O}(12 \mathrm{~W})-\mathrm{Tb}(3)-\mathrm{O}(7 \mathrm{~W})$	67(3)
$\mathrm{O}(53)-\mathrm{Tb}(1)-\mathrm{O}(41)$	148.2(10)	$\mathrm{O}(66)-\mathrm{Tb}(2)-\mathrm{O}(5 \mathrm{~W})$	120.5(10)	$\mathrm{O}(12 \mathrm{~W})-\mathrm{Tb}(3)-\mathrm{O}(2)$	98(3)
$\mathrm{O}(53)-\mathrm{Tb}(1)-\mathrm{O}(3 \mathrm{~W})$	104.9(8)	$\mathrm{O}(66)-\mathrm{Tb}(2)-\mathrm{O}(15)$	76.1(9)	$\mathrm{O}(12 \mathrm{~W})-\mathrm{Tb}(3)-\mathrm{O}(11 \mathrm{~W})$	84(3)
$\mathrm{O}(53)-\mathrm{Tb}(1)-\mathrm{O}(2 \mathrm{~W})$	69.9(9)	$\mathrm{O}(66)-\mathrm{Tb}(2)-\mathrm{O}(4 \mathrm{~W})$	139.4(11)	$\mathrm{O}(12 \mathrm{~W})-\mathrm{Tb}(3)-\mathrm{O}(9 \mathrm{~W})$	139(3)
$\mathrm{O}(53)-\mathrm{Tb}(1)-\mathrm{O}(1 \mathrm{~W})$	73.9(9)			$\mathrm{O}(12 \mathrm{~W})-\mathrm{Tb}(3)-\mathrm{O}(4) \# 3$	77(3)
$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(6)$	100.7(13)	$\mathrm{O}(72)-\mathrm{W}(19)-\mathrm{O}(57) \# 1$	99.3(12)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(30)$	102.2(13)
$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(47)$	97.8(11)	$\mathrm{O}(72)-\mathrm{W}(19)-\mathrm{O}(38)$	102.3(11)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(53)$	98.2(12)
$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(19)$	100.9(11)	$\mathrm{O}(72)-\mathrm{W}(19)-\mathrm{O}(58)$	97.0(12)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(6)$	90.9(13)
$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(8)$	89.0(12)	$\mathrm{O}(72)-\mathrm{W}(19)-\mathrm{O}(62)$	101.4(11)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(10)$	94.2(12)
$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(79)$	171.8(12)	$\mathrm{O}(72)-\mathrm{W}(19)-\mathrm{O}(61)$	169.0(10)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(26)$	170.9(11)

Symmetry transformations used to generate equivalent atoms: \#1 -x+1,-y,-z+2, \#3 -x+1,-y,-z+1

Table S3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of compound 2

Dy(1)-O(53)	2.265(17)	Dy(1)-O(41)	2.364(17)	Dy(1)-O(2W)	2.44(2)
Dy(1)-O(50)\#1	2.336(18)	Dy(1)-O(75)	2.38(2)	Dy(1)-O(1W)	2.47(2)
Dy(1)-O(40)	2.354(18)	Dy(1)-O(3W)	2.410(17)	Dy(2)-O(12)	2.333 (18)
Dy(2)-O(1)	2.236(15)	Dy(2)-O(30)\#1	2.25(2)	Dy(2)-O(15)	2.367(18)
Dy(2)-O(66)	2.252(18)	Dy(2)-O(5W)	2.318(18)	Dy(2)-O(4W)	2.45(2)
Dy(3)-O(8W)	2.29(2)	Dy(3)-O(12W)	2.34(6)	Dy(3)-O(7W)	2.41(3)
Dy(3)-O(2)	2.326(18)	Dy(3)-O(4)\#3	2.380(19)	Dy(3)-O(11W)	2.46(5)
Dy(3)-O(10w)	2.33(5)	Dy(3)-O(9W)	2.38(2)		
$\mathrm{W}(4)-\mathrm{O}(50)$	1.72(2)	$\mathrm{W}(4)-\mathrm{O}(9)$	1.828(16)	$\mathrm{W}(4)-\mathrm{O}(57)$	2.050 (18)
$\mathrm{W}(4)-\mathrm{O}(10)$	1.786(14)	$\mathrm{W}(4)-\mathrm{O}(47)$	1.931(18)	$\mathrm{W}(4)-\mathrm{O}(77)$	2.240 (19)
$\mathrm{W}(6)-\mathrm{O}(66)$	1.757(18)	$\mathrm{W}(6)-\mathrm{O}(47)$	1.869(17)	$\mathrm{W}(6)-\mathrm{O}(8)$	1.99(2)
$\mathrm{W}(6)-\mathrm{O}(6)$	1.804(17)	$\mathrm{W}(6)-\mathrm{O}(19)$	1.89(2)	$\mathrm{W}(6)-\mathrm{O}(78)$	2.203(19)
$\mathrm{W}(22)-\mathrm{O}(74)$	1.69(2)	$\mathrm{W}(22)-\mathrm{O}(30)$	1.81(2)	$\mathrm{W}(22)-\mathrm{O}(10)$	2.072(15)
$\mathrm{W}(22)-\mathrm{O}(53)$	1.786(18)	$\mathrm{W}(22)-\mathrm{O}(6)$	2.068(19)	$\mathrm{W}(22)-\mathrm{O}(26)$	$2.393(4)$
O(53)-Dy(1)-O(50)\#1	77.2(7)	$\mathrm{O}(1)-\mathrm{Dy}(2)-\mathrm{O}(66)$	75.2(6)	$\mathrm{O}(8 \mathrm{~W})-\mathrm{Dy}(3)-\mathrm{O}(2)$	146.7(8)
$\mathrm{O}(53)-\mathrm{Dy}(1)-\mathrm{O}(40)$	78.3(6)	$\mathrm{O}(1)-\mathrm{Dy}(2)-\mathrm{O}(12)$	92.1(6)	$\mathrm{O}(8 \mathrm{~W})-\mathrm{Dy}(3)-\mathrm{O}(12 \mathrm{~W})$	96.5(15)
$\mathrm{O}(53)-\mathrm{Dy}(1)-\mathrm{O}(41)$	146.5(7)	$\mathrm{O}(1)-\mathrm{Dy}(2)-\mathrm{O}(30) \# 1$	92.8(7)	$\mathrm{O}(8 \mathrm{~W})-\mathrm{Dy}(3)-\mathrm{O}(9 \mathrm{~W})$	72.1(8)
$\mathrm{O}(53)-\mathrm{Dy}(1)-\mathrm{O}(75)$	141.6(7)	$\mathrm{O}(1)-\mathrm{Dy}(2)-\mathrm{O}(15)$	127.6(7)	$\mathrm{O}(8 \mathrm{~W})-\mathrm{Dy}(3)-\mathrm{O}(10 \mathrm{~W})$	89.0(12)
$\mathrm{O}(53)-\mathrm{Dy}(1)-\mathrm{O}(3 \mathrm{~W})$	105.6(7)	$\mathrm{O}(1)-\mathrm{Dy}(2)-\mathrm{O}(4 \mathrm{~W})$	74.0(6)	$\mathrm{O}(8 \mathrm{~W})-\mathrm{Dy}(3)-\mathrm{O}(11 \mathrm{~W})$	142.6(14)
$\mathrm{O}(53)-\mathrm{Dy}(1)-\mathrm{O}(2 \mathrm{~W})$	70.6(7)	$\mathrm{O}(1)-\mathrm{Dy}(2)-\mathrm{O}(5 \mathrm{~W})$	156.1(7)	O(8W)-Dy(3)-O(7W)	87.6(10)
$\mathrm{O}(53)-\mathrm{Dy}(1)-\mathrm{O}(1 \mathrm{~W})$	73.8(7)			$\mathrm{O}(8 \mathrm{~W})$-Dy(3)-O(4)\#3	74.5(8)
$\mathrm{O}(50)-\mathrm{W}(4)-\mathrm{O}(10)$	102.3(8)	$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(6)$	100.9(9)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(30)$	101.3(10)
$\mathrm{O}(50)-\mathrm{W}(4)-\mathrm{O}(9)$	98.7(9)	$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(47)$	98.4(8)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(10)$	91.4(8)
$\mathrm{O}(50)-\mathrm{W}(4)-\mathrm{O}(47)$	97.6(8)	$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(19)$	100.1(8)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(6)$	92.7(9)
$\mathrm{O}(50)-\mathrm{W}(4)-\mathrm{O}(57)$	90.9(8)	$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(8)$	90.5(9)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(26)$	169.3(7)
$\mathrm{O}(50)-\mathrm{W}(4)-\mathrm{O}(77)$	171.5(7)	$\mathrm{O}(66)-\mathrm{W}(6)-\mathrm{O}(78)$	172.7(9)	$\mathrm{O}(74)-\mathrm{W}(22)-\mathrm{O}(53)$	102.7(9)

Symmetry transformations used to generate equivalent atoms: \#1-x+1,-y,-z+2; \#3-x+1,-y,-z+1

Table S4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of compound $\mathbf{3}$

$\mathrm{Nd}(1)-\mathrm{O}(18)$	2.403(17)	$\mathrm{Nd}(1)-\mathrm{O}(2)$	2.448(12)	Nd(1)-O(5W)	2.84(4)
$\mathrm{Nd}(1)-\mathrm{O}(76) \# 1$	2.431(14)	$\mathrm{Nd}(1)-\mathrm{O}(3 \mathrm{~W})$	2.46(3)	$\mathrm{Nd}(1)-\mathrm{O}(40) \# 1$	2.462(13)
$\mathrm{Nd}(1)-\mathrm{O}(46)$	2.444 (14)	$\mathrm{Nd}(2)-\mathrm{O}(6) \# 1$	2.390(14)	$\mathrm{Nd}(2)-\mathrm{O}(8 \mathrm{~W})$	2.50(2)
$\mathrm{Nd}(2)-\mathrm{O}(29)$	2.364(17)	$\mathrm{Nd}(2)-\mathrm{O}(55)$	2.457(13)	$\mathrm{Nd}(2)-\mathrm{O}(2 \mathrm{~W})$	2.54(3)
$\mathrm{Nd}(2)-\mathrm{O}(7)$	2.368(13)	$\mathrm{Nd}(2)-\mathrm{O}(33)$	2.469(14)	$\mathrm{Nd}(2)-\mathrm{O}(4 \mathrm{~W})$	2.60(3)
$\mathrm{Nd}(3)-\mathrm{O}(10 \mathrm{~W})$	2.446 (16)	$\mathrm{Nd}(3)-\mathrm{O}(6 \mathrm{~W})$	2.484(18)	$\mathrm{Nd}(3)-\mathrm{O}(12 \mathrm{~W})$	2.541(16)
$\mathrm{Nd}(3)-\mathrm{O}(62) \# 2$	2.455(15)	$\mathrm{Nd}(3)-\mathrm{O}(1 \mathrm{~W})$	2.524(16)	$\mathrm{Nd}(3)-\mathrm{O}(9 \mathrm{~W})$	2.581(14)
$\mathrm{Nd}(3)-\mathrm{O}(7 \mathrm{~W})$	2.474(18)	$\mathrm{Nd}(3)-\mathrm{O}(41)$	2.531(15)	$\mathrm{Nd}(3)-\mathrm{O}(11 \mathrm{~W})$	2.586(15)
$\mathrm{W}(3)-\mathrm{O}(29)$	1.761(17)	$\mathrm{W}(3)-\mathrm{O}(58)$	1.906(14)	W(3)-O(45)	2.024(14)
$\mathrm{W}(3)-\mathrm{O}(70)$	1.807(14)	W(3)-O(74)	1.952(13)	W(3)-O(77)	2.255(16)
$\mathrm{W}(8)-\mathrm{O}(76)$	1.746(14)	$\mathrm{W}(8)-\mathrm{O}(73)$	$1.9213(12)$	$\mathrm{W}(8)-\mathrm{O}(60)$	2.081(12)
$\mathrm{W}(8)-\mathrm{O}(6)$	1.746(14)	$\mathrm{W}(8)-\mathrm{O}(70)$	2.065(13)	$\mathrm{W}(8)-\mathrm{O}(14)$	2.103(18)
$\mathrm{W}(9)-\mathrm{O}(18)$	1.719(17)	$\mathrm{W}(9)-\mathrm{O}(74)$	1.884(13)	W(9)-O(21)	2.004(14)
$\mathrm{W}(9)-\mathrm{O}(60)$	1.805(12)	$\mathrm{W}(9)-\mathrm{O}(28)$	1.911(14)	$\mathrm{W}(9)-\mathrm{O}(78)$	2.203(15)
$\mathrm{O}(18)-\mathrm{Nd}(1)-\mathrm{O}(76) \# 1$	73.9(6)	$\mathrm{O}(55)-\mathrm{Nd}(2)-\mathrm{O}(4 \mathrm{~W})$	118.9(7)	$\mathrm{O}(12 \mathrm{~W})-\mathrm{Nd}(3)-\mathrm{O}(9 \mathrm{~W})$	84.3(5)
$\mathrm{O}(18)-\mathrm{Nd}(1)-\mathrm{O}(46)$	75.4(5)	$\mathrm{O}(55)-\mathrm{Nd}(2)-\mathrm{O}(33)$	115.9(5)	$\mathrm{O}(12 \mathrm{~W})-\mathrm{Nd}(3)-\mathrm{O}(11 \mathrm{~W})$	133.2(5)
$\mathrm{O}(18)-\mathrm{Nd}(1)-\mathrm{O}(2)$	115.5(5)	$\mathrm{O}(55)-\mathrm{Nd}(2)-\mathrm{O}(8 \mathrm{~W})$	67.7(6)	$\mathrm{O}(10 \mathrm{~W})-\mathrm{Nd}(3)-\mathrm{O}(12 \mathrm{~W})$	138.1(5)
$\mathrm{O}(18)-\mathrm{Nd}(1)-\mathrm{O}(40) \# 1$	69.5(5)	$\mathrm{O}(55)-\mathrm{Nd}(2)-\mathrm{O}(2 \mathrm{~W})$	155.1(7)	$\mathrm{O}(62) \# 2-\mathrm{Nd}(3)-\mathrm{O}(12 \mathrm{~W})$	66.7(5)
$\mathrm{O}(18)-\mathrm{Nd}(1)-\mathrm{O}(13 \mathrm{~W})$	140.1(7)	$\mathrm{O}(6) \# 1-\mathrm{Nd}(2)-\mathrm{O}(55)$	82.7(5)	$\mathrm{O}(7 \mathrm{~W})-\mathrm{Nd}(3)-\mathrm{O}(12 \mathrm{~W})$	79.2(6)
$\mathrm{O}(18)-\mathrm{Nd}(1)-\mathrm{O}(5 \mathrm{~W})$	66.1(10)	$\mathrm{O}(29)-\mathrm{Nd}(2)-\mathrm{O}(55)$	69.3(5)	$\mathrm{O}(6 \mathrm{~W})-\mathrm{Nd}(3)-\mathrm{O}(12 \mathrm{~W})$	74.4(6)
$\mathrm{O}(18)-\mathrm{Nd}(1)-\mathrm{O}(3 \mathrm{~W})$	140.4(7)	$\mathrm{O}(7)-\mathrm{Nd}(2)-\mathrm{O}(55)$	82.0(5)	$\mathrm{O}(1 \mathrm{~W})-\mathrm{Nd}(3)-\mathrm{O}(12 \mathrm{~W})$	71.9(5)
				$\mathrm{O}(41)-\mathrm{Nd}(3)-\mathrm{O}(12 \mathrm{~W})$	142.2(6)
$\mathrm{O}(29)-\mathrm{W}(3)-\mathrm{O}(70)$	100.1(7)	$\mathrm{O}(76)-\mathrm{W}(8)-\mathrm{O}(6)$	103.0(7)	$\mathrm{O}(18)-\mathrm{W}(9)-\mathrm{O}(60)$	103.0(7)
$\mathrm{O}(29)-\mathrm{W}(3)-\mathrm{O}(58)$	102.2(7)	$\mathrm{O}(76)-\mathrm{W}(8)-\mathrm{O}(73)$	99.4(6)	$\mathrm{O}(18)-\mathrm{W}(9)-\mathrm{O}(74)$	97.9(6)
$\mathrm{O}(29)-\mathrm{W}(3)-\mathrm{O}(45)$	92.0(7)	$\mathrm{O}(76)-\mathrm{W}(8)-\mathrm{O}(70)$	88.1(6)	$\mathrm{O}(18)-\mathrm{W}(9)-\mathrm{O}(28)$	100.5(7)
$\mathrm{O}(29)-\mathrm{W}(3)-\mathrm{O}(77)$	173.0(6)	$\mathrm{O}(76)-\mathrm{W}(8)-\mathrm{O}(60)$	162.1(7)	$\mathrm{O}(18)-\mathrm{W}(9)-\mathrm{O}(21)$	90.0(7)
$\mathrm{O}(29)-\mathrm{W}(3)-\mathrm{O}(74)$	96.3(6)	$\mathrm{O}(76)-\mathrm{W}(8)-\mathrm{O}(14)$	88.6(7)	$\mathrm{O}(18)-\mathrm{W}(9)-\mathrm{O}(78)$	171.8(6)

Symmetry transformations used to generate equivalent atoms: \#1-x+1,-y,-z+2; \#2 -x+1,-y,-z+1

4. Additional physical measurements for compounds 1-3

4.1 IR spectra of compound 1-3

Fig. S8 FT-IR spectrum of compound 1 measured at room temperature

Fig. S9 FT-IR spectrum of compound 2 measured at room temperature

Fig. S10 FT-IR spectrum of compound $\mathbf{3}$ measured at room temperature

IR spectra

In the IR spectrum of compounds $\mathbf{1 - 3}$ (Fig. S8-S10), four characteristic peaks in the range of $1000-700 \mathrm{~cm}^{-1}$ are ascribed to the vibrations of $v(\mathrm{As}-\mathrm{O}), v\left(\mathrm{~W}=\mathrm{O}_{\mathrm{t}}\right)$ and $v\left(\mathrm{~W}-\mathrm{O}_{\mathrm{b} / c}-\mathrm{W}\right)$ of POM clusters, respectively. The strong and broad peak near $3440 \mathrm{~cm}^{-1}$ is attributed to extending vibrations of crystalline lattice water molecules. The strong peaks close to $3850 \mathrm{~cm}^{-1}$ and $1640 \mathrm{~cm}^{-1}$ are attributed to the $v(\mathrm{C}=\mathrm{O})$ vibration of proline ligands. The peaks close to $3740 \mathrm{~cm}^{-1}$ and $1545 \mathrm{~cm}^{-1}$ correspond to the vibration of the NH_{2}^{+}group, and the peak near $1355 \mathrm{~cm}^{-1}$ corresponds to $v(\mathrm{C}-\mathrm{N})$ of proline ligands.

4.2 TG analysis of compounds $\mathbf{1 - 3}$

Fig. S11 TG curve for compound 1

Fig. S12 TG curve for compound 2

Fig. S13 TG curve for compound 3

TG analysis

The TG curve of 1 shows a total weight loss of 10.22% in the range of $44-617{ }^{\circ} \mathrm{C}$, in agreement with the calculated value of 10.36%. The weight loss of 6.15% at $44-207{ }^{\circ} \mathrm{C}$ corresponds to the loss of all crystalline and coordinated water molecules (calc. 6.07%). The weight loss of 1.77% at $375-435{ }^{\circ} \mathrm{C}$ is attributed to the decomposition and loss of proline ligands. The weight loss of 2.38% occurs between $440-600{ }^{\circ} \mathrm{C}$, probably due to the loss of partial arsenic oxide and composition water molecules (calc. 2.53\%).

The TG curve of 2 gives a total weight loss of 11.05% in the range of $52-671{ }^{\circ} \mathrm{C}$, which agrees with the calculated value of 10.72%. The weight loss of 6.83% at $52-194{ }^{\circ} \mathrm{C}$ corresponds to the loss of all crystalline and coordinated water molecules (calc. 6.45%). The weight loss of 1.81% at $385-461{ }^{\circ} \mathrm{C}$ is attributed to the decomposition and loss of proline ligands. The weight loss of 2.41% occurs between $538-673{ }^{\circ} \mathrm{C}$, probably due to the loss of partial arsenic oxide and composition water molecules (calc. 2.52%).

The TG curve of $\mathbf{3}$ shows a total weight loss of 11.65% in the range of $53-642{ }^{\circ} \mathrm{C}$, in agreement with the calculated value of 12.04%. The weight loss of 7.57% at $53-195{ }^{\circ} \mathrm{C}$ corresponds to the loss of all crystalline and coordinated water molecules (calc. 7.78%). The weight loss of 1.63% at $419-495{ }^{\circ} \mathrm{C}$ is attributed to the decomposition and loss of proline ligands. The weight loss of 2.45% occurs between $565-639{ }^{\circ} \mathrm{C}$, probably due to the loss of partial arsenic oxide and composition water molecules (calc. 2.52\%).

4.3 Photoluminescent propertie of compound 3

Fig. S14 The luminescence spectrum of $\mathrm{Nd}(\mathrm{III})$ in compound $\mathbf{3}$ excited at 350 nm .

4.4 Powder X-ray diffractions of compounds $\mathbf{1 - 3}$

Fig. S15 Experimental powder X-ray diffraction pattern of 1 (black) and simulated PXRD pattern (from the single-crystal X-ray diffraction data) of $\mathbf{1}$ (red).

Fig. S16 Experimental powder X-ray diffraction pattern of 2 (black) and simulated PXRD pattern (from the single-crystal X-ray diffraction data) of $\mathbf{2}$ (red).

Fig. S17 Experimental powder X-ray diffraction pattern of $\mathbf{3}$ (black) and simulated PXRD pattern (from the single-crystal X-ray diffraction data) of $\mathbf{3}$ (red).

Discussion: Powder X-ray diffraction pattern of all compounds have been collected to confirm the phase purity of the bulk compounds (Figure S15-S17).

