Supporting Information

Insight into the connecting roles of interaction synthons and water clusters within different transition metal coordination compounds of pyridine-2,5-dicarboxylic acid: experimental and theoretical studies

H. Eshtiagh-Hosseini, M. Mirzaei,^{*} M. Biabani, V. Lippolis,^{*} M. Chahkandi and C. Bazzicalupi

Figure S1. ¹H-NMR spectrum of compound 2.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Figure S2. ¹H- and ¹³C-NMR spectra of compound **3**.

Figure S3. ¹H- and ¹³C-NMR spectra of compound 4.

Figure S4. ¹H-NMR spectrum of compound 5.

Figure S5. The TG curve of compound 2.

$(H9-aacr)^{+}_{2}[Zn(py-2,5-dc)_{2}(H_{2}O)_{2}]\cdot 4H_{2}O(2)$

A TGA analysis for compound, **2** was performed in the temperature range of 5-1000°C (Fig. S5). The TG curve shows that this compound exhibits three steps of weight loss. The first stages are related to removal of crystallization water molecules and coordinated water molecules in the range 110-160 °C (found: 11.35%, calcd: 12.09%), The second stage in the range 340-400 °C is related to the release of 9-aacr ligands and one py-2,5-dc ligand (found: 61.32%, calcd:62.02%). The third stage from 450 to 500 °C corresponds to the loss of second py-2,5-dc molecule (found: 18.08%, calcd: 18.46%). The final decomposition product is ZnO (found: 9.25%, calcd: 9.10%).

Figure S6. The TG curve of compound 3.

$(H9-aacr)^{+}_{2}[Ni(py-2,5-dc)_{2}(H_{2}O)_{2}]\cdot 4H_{2}O(3)$

A thermogravimetric analysis for compound, **3**, was performed in the temperature range of 5-1000°C (Fig. S6). The TG curve shows that this compound exhibits three steps of weight loss. The first stages are related to removal of two coordinated water and four non-coordinated water molecules in the range 95-190°C (found: 11.39%, calcd: 12.20%). The second step between 300 and 400°C is related to the release of the 9-aacr ligands (found: 39.97%, calcd: 44.06%). The third stage between 400 and 420°C corresponds to the loss of py-2,5-dc molecules (found: 39.05%, calcd: 37.26%). The final decomposition product is NiO (found: 9.5%, calcd: 8.4%).

Figure S7. The TG curve of compound 4.

$(H9-aacr)^{+}_{2}[Cu(py-2,5-dc)_{2}(H_{2}O)] \cdot H_{2}O \cdot DMF$ (4)

The TG curve shows that this compound exhibits four steps of weight (Fig. S7). First step of decomposition of **4** from 100-150°C are related to removal of coordinated and non-coordinated water molecules (found: 4.13%, calcd: 4.03%). The second step corresponds to the loss of two 9-aacr ligands in the range 315 °C (found: 41.00%, calcd: 43.71%). The third stage between 300 and 350°C are related to the release of DMF molecule (found: 6.08%, calcd: 8.18%). The fourth stage between 350 and 400°C corresponds to the loss of two py-2,5dc molecules (found: 35.06%, calcd: 35.82%). The final decomposition product is CuO and CO₂ (found: 13.79%, calcd: 13.83%).

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

Figure S8. The Formation energy of **2_mon** starting from the $[Zn(py-2,5-dc)_2(H_2O)_2]^{2-}$ metal complex (**2_complex**).

Figure S9. The Formation energy of 3_mon starting from the $[Ni(py-2,5-dc)_2(H_2O)_2]^{2-}$ metal complex (3_complex).

Figure S10. The Formation energy of **4_mon** starting from the $[Cu(py-2,5-dc)_2(H_2O)]^{2-}$ metal complex (**4_complex**).

Figure S11. The Formation energy of **5_mon** starting from the $[Cr(CN)_4(py-2,5-dc)]^{3-}$ metal complex (**5_complex**)

Figure S12. Crystal packing diagram of compound 1 showing a columnar distribution of the anionic and cationic fragments.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Figure S13, Crystal Packing diagram of the compound 4 and π - π stacking interactions between cationic species centers of (*H*9-aacr)⁺.

Formatted: Font color: Re Formatted: Font color: Re Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

Figure S14. Crystal packing diagram of compound **5** (water molecules omitted) and schematic image of π - π stacking interactions between (*H*9-aacr)⁺ cationic units viewed along the *b* axis.

Formatted: Font color: Re

Compound 1	Experimental	Calculated		Experimental	Calculated
Zn-O(1)	2.0733(16)	2.0526	$N(1^{i})$ -Zn- $N(1)$	180.000(1)	178.12
Zn-N(1)	2.1086(19)	2.0882	O(1)-Zn-OW(1)	90.99(7)	87.32
Zn-OW(1)	2.1671(17)	2.1453	N(1)-Zn-OW(1)	91.51(7)	90.37
$O(1^i)$ –Zn– $O(1)$	180.000(1)	175.26	$O(1)$ -Zn- $OW(1^{i})$	89.01(7)	88.30
$O(1)$ – Zn – $N(1^i)$	100.55(7)	98.36	N(1)-Zn-OW(1 ⁱ)	88.49(7)	90.28
O(1)-Zn-N(1)	79.45(7)	74.67	$OW(1)$ -Zn- $OW(1^{i})$	180.0	179.04
Compound 2					
Zn-OW(1)	2.095(2)	2.107	$O(3^i)$ -Zn- $O(3)$	88.45(11)	89.70
Zn-O(3)	2.1140(19)	2.095	OW(1)– Zn – $N(1)$	91.90(8)	90.43
Zn-N(1)	2.136(2)	2.127	$O(3^i)$ -Zn-N(1)	92.74(8)	93.72
$OW(1^{i})$ -Zn- $OW(1)$	90.37(14)	88.56	O(3)-Zn-N(1)	78.45(8)	75.08
$OW(1^i)$ -Zn- $O(3)$	91.40(9)	95.06	$OW(1)$ -Zn- $N(1^{i})$	96.71(8)	92.33
OW(1)-Zn-O(3)	170.33(7)	167.39	OW(1)-Zn-N(1)	91.90(8)	91.03
Compound 3					
Ni-O(1)	2.0679(18)	2.0582	O(1) -Ni-OW(1)	172.67(7)	173.22
Ni-N(1)	2.080(2)	2.0588	N(1) -Ni-OW(1)	92.41(8)	89.03
Ni–OW(1)	2.081(2)	2.0590	$O(1) - Ni - OW(1^{i})$	90.96(8)	91.36
$O(1)$ -Ni- $O(1^{i})$	88.47(10)	87.60	$N(1) - Ni - OW(1^{i})$	94.64(8)	95.58
$O(1)-Ni-N(1^{i})$	92.47(8)	91.90	$OW(1) - Ni - OW(1^{i})$	90.53(12)	88.46
O(1)-Ni-N(1)	80.31(8)	79.55	O(1) -Ni-OW(1)	172.67(7)	173.87
Compound 4					
Cu-O(4)	1.959(3)	1.977	N(1)-Cu-N(4)	168.58(11)	172.45
Cu-O(7)	1.960(3)	1.982	O(4)-Cu-OW(1)	98.90(10)	99.37
Cu-N(1)	1.972(3)	1.985	O(7)-Cu-OW(1)	94.02(10)	97.52
Cu-N(4)	1.975(3)	1.982	N(1)-Cu-OW(1)	99.12(10)	97.20
Cu-OW(1)	2.204(2)	2.216	N(4)-Cu-OW(1)	92.30(10)	95.16
O(4)-Cu-O(7)	166.96(10)	165.30			
O(4)-Cu-N(1)	83.69(11)	85.49			
O(7)-Cu-N(1)	96.10(11)	92.82			
O(4)- Cu - $N(4)$	94.51(11)	93.87			
O(7)-Cu-N(4)	83.10(11)	84.91			
Compound 5					
Cr(01)–C(9)	1.683(5)	1.667	C(9)-Cr(01)-N(1)	174.6(2)	177.18
Cr(01)–O(2)	1.959(4)	1.940	O(2)-Cr(01)-N(1)	79.06(16)	82.90
Cr(01)-C(8)	2.048(7)	2.028	C(8)-Cr(01)-N(1)	87.8(2)	86.22
Cr(01)-C(10)	2.065(7)	2.047	C(10)-Cr(01)-N(1)	92.3(2)	92.06
Cr(01)-C(11)	2.076(6)	2.057	C(11)-Cr(01)-N(1)	84.25(19)	86.57
Cr(01) - N(1)	2.100(4)	2.083	C(9)-Cr(01)-O(2)	96.6(2)	93.35
C(9)-Cr(01)-C(8)	95.3(2)	97.13			
O(2)-Cr(01)-C(8)	88.4(2)	85.10			
C(9)-Cr(01)-C(10)	91.9(2)	92.82			
O(2)-Cr(01)-C(10)	171.15(19)	173.49			
C(9)-Cr(01)-C(11)	93.2(2)	96.64			
O(2)-Cr(01)-C(11)	87.2(2)	90.38			
C(8)-Cr(01)-C(11)	171.5(2)	175.50			
C(10)- $Cr(01)$ - $C(11)$	90.1(2)	92.24			

 $\label{eq:stable} \textbf{Table S1. Selected experimental and calculated bond lengths (Å) and angles (°) for compounds \textbf{1-5}.$

¹Symmetry code: (i) -x+1, -y+1, -z+1. ²Symmetry code: (i) -x+1, y, -z+3/2. ³Symmetry code: (i) -x, y, -z-1/2.

Interactions	d(H···A)	< (DHA)	Binding Energy	Interactions	d(H···A)	< (DHA)	Binding Energy
					_		<u> </u>
1_mon							
N_4 – H_4 ··· O_2	1.891	170.63	37.73	$N_3 - H_6 \cdots O_4$	1.773	175.43	40.24
N_4 – H_5 ···O_3	1.767	177.11	40.38				
2							
2_mon	2 00 4	155 67	22 57		1.065	177.00	20.04
$N_2 - H_1 \cdots O_1$	2.094	155.67	33.57	$OW_4 - H_{17} \cdots OW_3$	1.865	1/7.28	39.04
$N_3 - H_{14} \cdots O_2$	1.794	173.20	40.56	$\pi_{C15-C20}\cdots\pi_{C9-C14}$	3.495	180.00	20.83
$N_2 - H_2 \cdots O_4$	2.005	149.51	36.31	$\pi_{\text{C8-N3}}\cdots\pi_{\text{C9-C14}}$	3.337	180.00	21.82
$OW_3 - H_{15} \cdots O_1$	1.747	161.34	41.07	$\pi_{N3-C15}\cdots\pi_{N3-C15}$	3.323	180.00	20.66
$OW_2 - H_{16} \cdots OW_4$	1.926	176.70	37.81				
3 mon							
$N_3 - H_3 \cdots O_4$	1.903	173.26	38.26	$O_7 - H_9 \cdots O_1$	2.045	176.31	35.61
$N_2 - H_1 \cdots O_3$	2.027	154.30	35.92	$O_7 - H_8 \cdots O_6$	1.906	169.14	38.20
$N_2 - H_2 \cdots O_2$	1.960	151.32	37.15	π_{C15}	3.474	180.00	20.96
$O_5 - H_4 \cdots O_7$	1.883	155.29	38.67	$\pi_{N3-C15}\cdots\pi_{C9-C14}$	3.341	180.00	21.79
$O_6 - H_7 \cdots O_3$	1.864	168.75	39.06	$\pi_{N3-C15} \cdots \pi_{N3-C15}$	3.314	180.00	21.97
$O_6 - H_{10} \cdots O_2$	1.921	154.94	37.90				
4 mon							
$N_{\epsilon} - H_{4} \cdots O_{2}$	1 824	173 80	39.92	C_{17} - H_{17A} ···· π_{N6} C_{24}	3 285	100.25	22.16
$N_2 - H_2 \cdots O_1$	1 756	160.35	41 46	C_{22} -H ₂₂ A···· $\pi_{C_{15}}$ C ₂₀	3 231	88 37	22.53
$N_{\varepsilon} - H_{\varepsilon} \cdots O_{\varepsilon}$	1.750	164.62	39.29	C_{15} H_{15A} π_{C15} C_{20}	3 1 2 8	87.12	23.26
$N_2 = H_1 \dots O_c$	1.855	173 74	39.53	$C_{10} H_{10A} \pi C_{29} C_{34}$	3 380	101 44	23.20
N_{2} H_{1} O_{6}	2 056	146.03	35.40	C_{32} H _{32A} π_{N3} -Cls	3 364	77 20	21.34
N_HO	2.050	1/6 22	36.37	C_{38} - Π_{38A} ···· π_{C15} - C_{20}	3 310	85.17	21.75
$\mathbf{O}_{2} \mathbf{H}_{2} \mathbf{H}_{2} \mathbf{H}_{3} \mathbf{O}_{8}$	1 051	166 20	30.37	Сп-нцани ис293-С34 Пара в на стала в с	3 701	180.00	10.67
$O_9 - H_{11} \cdots O_{10}$	1.951	166.39	37.32	$\pi_{C35-C40} \cdots \pi_{C15-C20}$	3.701	180.00	19.67

Fable S2. The Non-Covalent Interactions Distances (Å), Angles (°), and Binding Energies (kcal mol ⁻¹) of 1_mon to 5_mon calcula with B3LYP-D/ triple— ζ 6-311+G(<i>d</i> , <i>p</i>).	ted

$O_9-H_7\cdots O_{11}$	1.733	150.43	42.01	$\pi_{C35-C40}\cdots\pi_{N3-C15}$	3.402	180.00	21.40
$\pi_{\text{N6-C34}}\cdots\pi_{\text{C9-C14}}$	3.431	180.00	21.22	$\pi_{\text{N6-C34}}\cdots\pi_{\text{N3-C15}}$	3.583	180.00	20.32
$\pi_{C29-C34}\cdots\pi_{C9-C14}$	3.629	180.00	20.06				
5_mon							
N_8 – H_{8B} ··· N_4	2.142	153.22	33.85	$\pi_{C32-C37}\cdots\pi_{C13-C18}$	3.683	180.00	19.77
$N_6 - H_{6A} \cdots O_4$	2.025	140.74	35.94	$\pi_{C32-C37}\cdots\pi_{N7-C19}$	3.636	180.00	19.70
N_{10} – H_{10A} ···O ₃	2.048	154.29	35.55	$\pi_{N9-C31}\cdots\pi_{C19-C24}$	3.713	180.00	19.61
N_{11} - H_{11} ··· N_5	1.903	167.62	38.24	$\pi_{C26-C31}\cdots\pi_{C19-C24}$	3.671	180.00	19.75
$N_6 - H_{6B} \cdots O_1$	2.107	163.92	34.56	$\pi_{C45-C50}\cdots\pi_{N7-C19}$	3.675	180.00	19.81
OW_1 – H ···O_3	1.821	159.03	39.98	$\pi_{N9-C31}\cdots\pi_{N7-C19}$	3.698	180.00	19.42
OW_2 -H···N ₂	1.906	172.13	38.21	N_{11} - H_{11} ··· $\pi_{C13-C18}$	3.227	165.20	22.49
OW_4 – H ··· O_1	1.877	166.78	38.79	$N_7 - H_7 \cdots \pi_{C45-C50}$	3.383	159.83	21.52
$OW_5 - H \cdots O_2$	1.859	164.90	39.16	C_{14} - H_{14} ··· $\pi_{C39-C44}$	3.519	168.38	20.69
OW_3 – H ··· N_3	2.094	157.45	34.77	C_{49} - H_{49} ···· $\pi_{C19-C24}$	3.430	169.47	21.23
$OW_5 - H \cdots OW_3$	2.063	168.53	35.29	$N_6 - H_{6B} \cdots \pi_{C39-C44}$	3.624	175.39	20.08

Interactions	d(H···A)	< (DHA)	Binding Energy	Interactions	d(H···A)	< (DHA)	Binding Energy	
1_CN	-							
N_4 – H_4 ···O_2	1.910	162.24	37.70	$N_3 - H_6 \cdots O_4$	1.791	176.20	40.27	
N_4 - H_5 ··· O_3	1.749	176.81	40.89	$\pi_{N1-C6}\cdots\pi_{N1-C6}$	3.493	180.00	20.22	
$O_5 - H_{10} \cdots O_4$	1.826	173.47	40.52	C_4 – H_2 ··· π_{N1-C6}	3.348	77.39	21.32	
$O_5 - H_9 \cdots O_2$	1.928	177.56	38.53					
2_CN								
OW_2 - H_{12} ··· O_2	1.954	167.22	37.26	$\pi_{C15-C20}\cdots\pi_{C9-C14}$	3.487	180.00	21.14	
N_2 - H_1 ··· O_1	2.124	155.67	34.28	$\pi_{C8-N3}\cdots\pi_{C9-C14}$	3.328	180.00	22.05	
N_3 – H_{14} ···O ₂	1.830	171.24	39.79	$\pi_{N3-C15}\cdots\pi_{N3-C15}$	3.315	180.00	21.91	
N_2 - H_2 ··· O_4	2.035	150.51	35.78					
2_WCN								
OW_3 - H_{15} ··· O_1	1.726	166.87	40.48	OW_3 – H_{18} ···O_4	1.937	159.30	37.59	
OW_2 - H_{16} ··· OW_4	1.903	163.47	36.70	OW_2 - H_{12} ··· O_2	1.968,1.947	156.28	36.97,38.04	
OW_4 - H_{17} ··· OW_3	1.837	177.12	37.90	$\pi_{\text{N1-C6}}\cdots\pi_{\text{N1-C6}}$	3.498	180.00	20.81	
OW_4 – H_{19} ··· O_3	2.104	171.50	34.61					

Table S3. The Non-Covalent Interactions Distances (Å), Angles (°), and Binding Energies (kcal mol⁻¹) of **1_CN** to **3_CN**, and **2_WCN** to **5_WCN** calculated with B3LYP-D/ triple— ζ 6-311+G(*d*, *p*).

3_CN							
$N_3 - H_3 \cdots O_4$	1.922	174.64	37.88	$\pi_{\text{N1-C6}}\cdots\pi_{\text{N1-C6}}$	3.561	180.00	20.45
N_2 - H_1 ··· O_3	2.050	153.27	35.51	$\pi_{C15-C20}\cdots\pi_{C9-C14}$	3.439	180.00	21.17
N_2 - H_2 ··· O_2	1.981	148.15	36.75	$\pi_{N3-C15}\cdots\pi_{C9-C14}$	3.308	180.00	22.01
$O_5 - H_5 \cdots O_4$	1.876,1.952	171.39	38.81,37.30	$\pi_{N3-C15}\cdots\pi_{N3-C15}$	3.281	180.00	22.19
3_WCN							
$O_5 - H_5 \cdots O_4$	1.953	174.27	37.28	$O_7 - H_9 \cdots O_1$	2.024	177.32	35.28
$O_5 - H_4 \cdots O_7$	1.869	157.12	38.03	$O_7 - H_8 \cdots O_6$	1.882	169.03	37.84
$O_6 - H_7 \cdots O_3$	1.859	167.29	38.73	$\pi_{N1-C6}\cdots\pi_{N1-C6}$	3.316	180.00	21.72
O_6 - H_{10} ··· O_2	1.920	155.75	37.53	$C_4 – H_{4A} \cdots \pi_{N1\text{-}C6}$	3.856	65.92	16.38
4_WCN	1 700	150.04	12 (1		1.056	150.00	10.02
$\mathbf{O}_9 - \mathbf{H}_7 \cdots \mathbf{O}_{11}$	1.708	150.94	43.64	$O_{11}-H_{12}\cdots O_1$	1.856	159.23	40.83
5 WCN							
$OW_1 - H \cdots N_4$	2.038	161.44	35.70	$OW_5 - H \cdots O_2$	1.980	161.43	36.48
$OW_5 - H \cdots OW_1$	1.983	169.97	36.81	$N_8 - H_{8A} \cdots OW_5$	2.209	162.75	32.46
$OW_1 - H \cdots OW_5$	2.048	160.68	33.85	$OW_3 - H \cdots N_3$	2.133	173.83	33.83
OW_1 – H ···O_3	1.839	159.89	39.59	OW_2 – H ··· N_2	2.011	176.30	35.90
N_{10} – H_{10B} ···O W_2	2.040	151.61	34.78	$N_8 - H_{8B} \cdots N_4$	2.078	154.32	34.74
$OW_2-H\cdots OW_3$	1.969	171.16	36.27	$N_7-H_7\cdots OW_4$	1.827	168.50	39.35
$OW_3-H\cdots OW_2$	1.966	170.25	36.82	OW_4 – H ···O ₁	1.945	170.78	36.98
OW₅–H···OW₃	2.108	169.29	33.32	OW_4 – H ···O ₄	1.812	177.42	39.67

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013