Hydrothermal synthesis and controlled growth of vanadium oxide nanocrystals

Electronic Supplementary Information

Figure S1. XRD spectra of products of ligand-free reactions of hydrothermal VO_2 (M) nanoribbon synthesis after different reaction times

Figure S2. XRD of products of hydrothermal synthesis of VO_2 (M) nanocrystals synthesized under different reaction conditions and using different ligand molecules

Figure S5. TEM images of VO_2 nanostructures produced in hydrothermal reaction with 2-propanol as a ligand (left: 30μ l; right: 200μ l)

Figure S6. TEM images of VO_2 nanostructures produced in hydrothermal reaction with acetone as a ligand (top: 30μ l; bottom: 200μ l)

Figure S7. TEM images of VO₂ nanoribbons produced with ethanol as a ligand

Figure S8. HRTEM image of VO_2 nanoribbon, showing V_3O_7 phase due to surface oxidation after exposure of the sample to air

Surface oxidation in air

All nanocrystalline $VO_2(M)$ exhibit surface oxidation when exposed to air. The surface layer seems to be limited to a monolayer on the surface of the nanocrystals, as there are no phase boundaries evident in HRTEM images. Moreover, both the samples synthesized in air and the samples synthesized in inert atmosphere and then exposed to air exhibit as $VO_2(M)$ in XRD measurements. Neither the samples synthesized in air nor the samples synthesized in inert atmosphere and then exposed to air show any sign of significant oxidation due to prolonged exposure to air over a period of six months (Figure S2, top left), unlike the commercial bulk powder VO₂ precursor, which oxidizes in air when exposed to light. However, surface oxidation means that the samples in HRTEM images exhibit structure of tetragonal V₃O₇, in spite being synthesized and handled in inert atmosphere, except during the sample loading procedure into the instrument. In addition, Raman spectra of these samples exhibit VO₂ peaks when synthesized and handled in inert atmosphere, but oxidize instantly in contact with air, exhibiting peaks characteristic of orthorhombic V₂O₅ phase. All the while, in XRD measurements these samples exhibit no observable secondary phase in addition to VO₂(M), while even those samples exposed to air exhibit a reversible phase transition around 70°C (Figure S9). However, it was not possible at this point to determine the influence of surface oxidation on the phase transformation process. Therefore, the manuscript includes only those measurements where either it was possible to protect the samples from air or those where subsequent exposure to air made no difference.