Electronic Supplementary Information

From molecular crystals to salt co-crystals of barbituric acid via the carbonate ion and an improvement of the solid state properties

Michele R. Chierotti, Katia Gaglioti, Roberto Gobetto, Dario Braga, Fabrizia Grepioni, Lucia Maini

SSNMR characterization of the salt co-crystals NaBA·HBA·2H₂O, KBA·HBA·2H₂O and KBA·HBA_{0.5}·1.5H₂O.

NaBA·HBA·2H₂O is characterized by one BA⁻ and one neutral HBA in the asymmetric unit as confirmed by the ¹³C signals at 78.8 and 39.7 ppm attributed to the CH and CH₂ respectively. The presence of two independent molecules in the unit cell is confirmed also by the ¹⁵N peaks at 129.7, 121.9 and 117.2 ppm in a 2:1:1 ratio. These reflect the four different N-H…O HBs characterized by N-O distances of 2.765 and 2.802 Å for BA (signal at 129.7 ppm) and 2.874 and 2.849 Å for BA⁻ (peaks at 121.9 and 117.2 ppm). The HB environments are in agreement with two proton resonances at 13.3 and 10.3 ppm for the strong (2.765 and 2.802 Å) and weaker (2.874 and 2.849 Å) HBs, respectively. Two water molecules are also present in the unit cell as confirmed by the integral values of the ¹H MAS spectrum and TGA data.

The ¹³C CPMAS spectrum of KBA·HBA·2H₂O shows six sets of resonances in agreement with the presence of three independent BA⁻ and three HBA molecules in the unit cell. This is particularly evident by the splitting of the CH resonances at 78.6, 78.1 and 77.5 ppm. The ¹⁵N CPMAS spectrum is characterized by two groups of resonances centred around 130 (HBA NH) and 119 ppm (BA⁻ NH). All HBs give rise to two signals in the ¹H MAS spectrum at 13.1 and 10.4 ppm associated to the strong (N-O distances < of about 2.81 Å) and weak interactions (N-O distances > of about 2.81 Å). The number of water molecules (6) as obtained from ¹H integrals agrees with that found in the X-Ray structure.

¹³C CPMAS spectrum of KBA·HBA_{0.5}·1.5H₂O shows the high symmetry of this structure. Indeed, the unit cell is characterized by one BA⁻ (169.4, 154.6 and 79.6 ppm with a 2:1:1 ratio) and half molecule of HBA (173.0, 154.6 and 38.8 ppm with a 1:0.5:0.5 ratio). The C2 atoms of both HBA and BA⁻ give rise to resonances overlapped at 154.6 ppm with total integral values of 1.5. This is confirmed also by the ¹⁵N CPMAS spectrum where three peaks at 128.2, 118.5 and 118.1 ppm are present with the latter two being overlapped and belonging to the BA⁻ ion.

The number of water molecules was obtained by combining the ¹H MAS spectrum with TGA data.

The three HB environments (2.789 and 2.846 Å in BA⁻ and 2.800 Å for BA) correspond to the three ¹H signals in the HB region at 13.7, 11.9 and 10.7 with a 2:1:2 ratio. The first and the last are associate to the BA⁻ HBs (the strongest and the weakest) while the middle one to that of the HBA molecule.

Experimental pattern of $CaBA_2 \cdot 3H_2O$

Figures S2: Raman spectra of all prepared compounds.

Raman spectrum of the salt NaBA $\cdot 1H_2O$.

Raman spectrum of the salt co-crystal NaBA·HBA·2H₂O.

Raman spectrum of the salt co-crystal KBA·HBA_{0.5}·1.5H₂O.

Raman spectrum of the salt MgBA_2 $\cdot 2H_2O.$

Raman spectrum of the salt $CaBA_2 \cdot 3H_2O$.

Figures S3: IR (ATR) spectra of all prepared compounds.

IR (ATR) spectrum of NaBA·1H₂O.

IR (ATR) spectrum of KBA.

IR (ATR) spectrum of MgBA₂·2H₂O .

Figures S4: Calorimetric and Thermogravimetric curves of all prepared compounds.

DSC curve of KBA·HBA $_{0.5}$ ·1.5H₂O (sealed pan).

TGA curve of MgBA₂.

