Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2013

Polynuclear coordination compounds: A magnetostructural study of ferromagnetically coupled Ni₄O₄ cubane core motif

Sibasree Karmakar, and Sumit Khanra*

Indian Institute of Science Education and Research (IISER) – Kolkata BCKV Main Campus PO, Mohanpur, Nadia, WB 741252, India E-mail: <u>sumit.khanra@iiserkol.ac.in</u>

 H_2L^1

 H_2L^3

 H_2L^4

Fig S1 Representation of the ligands

Fig S2 Molecular ion peak in the ESI-MS spectrum for **1**(top) and **4**(bottom) with simulated and observed isotopic distributions.

Fig S3 Molecular ion peak in the ESI-MS spectrum for 5 with simulated and observed isotopic distributions.

Fig S4: Experimental (red) and calculated (blue) powder XRD patterns of complex 1.

Fig S5: Experimental (red) and calculated (blue) powder XRD patterns of complex 2.

Fig S6: Experimental (red) and calculated (blue) powder XRD patterns of complex 3.

Fig S7: Experimental (red) and calculated (blue) powder XRD patterns of complex 4.

Fig S8 Energy level calculation for **1** with parameters g = 2.06, $J_1 = -3.9$ cm⁻¹, $J_2 = +7.55$ cm⁻¹.

Fig S9 Energy level calculation for **2** with parameters g = 2.055, $J_1 = -2.45$ cm⁻¹, $J_2 = +7.3$ cm⁻¹.

Fig S10 Energy level calculation for **3** with parameters g = 2.045, $J_1 = -3.2$ cm⁻¹, $J_2 = +7.8$ cm⁻¹.

SK-213 Ni4 cmnt: cubane

Fig S11 Energy level calculation for **4** with parameters g = 2.13, $J_1 = -3.9$ cm⁻¹, $J_2 = +8.4$ cm⁻¹.

Fig. S12: A perspective view of the 3D packing of **1**; green lines represent hydrogen bonding.

Fig. S13: A perspective view of the 3D packing of **2**; green lines represent hydrogen bonding.

Fig. S14: 2D and 3D-contour projection of the relative error surface of fitting the magnetic data of **1**.

Fig. S15: 2D and 3D-contour projection of the relative error surface of fitting the magnetic data of **1**.

Fig. S16: 2D-contour projection of the relative error surface of fitting the magnetic data of **2** and **3**.

Fig. S17: 2D-contour projection of the relative error surface of fitting the magnetic data of 4.

Fig. S18: 2D-contour projection of the relative error surface of fitting the magnetic data of 2.

The magnetic data was also simulated by using additional parameter D based on the Hamiltonian noted below:

 $H = -2J_1 (S_1 \bullet S_2 + S_3 \bullet S_4) - 2J_2 (S_1 \bullet S_3 + S_1 \bullet S_4 + S_2 \bullet S_3 + S_2 \bullet S_4) + \Sigma D_{Ni} S_{iz}^2$

The simulation yielded the parameters $J_1 = -3$. 75 cm⁻¹, $J_2 = +7.66$ cm⁻¹, $D_{Ni} = |4|$ cm⁻¹, g = 2.06 for **1**; $J_1 = -2$. 27 cm⁻¹, $J_2 = +7.45$ cm⁻¹, $D_{Ni} = |4|$ cm⁻¹, g = 2.06 for **2**; $J_1 = -3$. 06 cm⁻¹, $J_2 = +7.88$ cm⁻¹, $D_{Ni} = |4|$ cm⁻¹, g = 2.05 for **3** and $J_1 = -3$. 72 cm⁻¹, $J_2 = +8.53$ cm⁻¹, $D_{Ni} = |4|$ cm⁻¹, g = 2.13 for **4**.

$Ni(1) \bullet \bullet Ni(2)$	3.038(1)		$Ni(2) \bullet \bullet Ni(3)$	3.035(2)	
$Ni(1) \bullet \bullet Ni(3)$	3.159(2)		$Ni(2) \bullet \bullet Ni(4)$	3.175(2)	
$Ni(1) \bullet \bullet Ni(4)$	3.037(1)		Ni(3)●●Ni(4)	3.039(2)	
Ni(1) - O(2)	1 979(6)		Ni(3) = O(3)	2 147(6)	
Ni(1) = O(3)	1.996(6)		Ni(3) = O(6)	2.117(0) 2.018(6)	
Ni(1) = O(9)	2 143(6)		Ni(3) = O(8)	1.977(6)	
Ni(1) = O(12)	2.143(0) 2.032(6)		Ni(3) = O(0) Ni(3) = O(9)	1.977(0)	
Ni(1) = O(12) Ni(1) = O(13)	2.032(0) 2.172(7)		Ni(3) = O(15)	2.150(6)	
Ni(1) = O(13) Ni(1) = N(1)	2.172(7) 1 088(8)		Ni(3) = O(13) Ni(3) = N(3)	2.137(0) 1 080(8)	
Ni(1) = N(1) Ni(2) = O(3)	2.065(6)		Ni(3) = N(3) Ni(4) = O(6)	2 1.700(0)	
Ni(2) = O(5)	1.959(6)		Ni(4) = O(0) Ni(4) = O(9)	2.144(0) 2.068(6)	
Ni(2) = O(3) Ni(2) = O(6)	1.937(0) 1.003(6)		$N_{1}(4) = O(2)$ $N_{2}(4) = O(2)$	1.062(6)	
Ni(2) = O(0) Ni(2) = O(12)	1.335(0) 2.126(6)		Ni(4) = O(11) Ni(4) = O(12)	1.902(0) 1.007(6)	
Ni(2) = O(12) Ni(2) = O(14)	2.130(0) 2.165(6)		Ni(4) = O(12) Ni(4) = O(16)	1.997(0) 2.188(6)	
NI(2) = O(14) NI(2) = N(2)	2.103(0)		NI(4) = O(10) NI(4) = N(4)	2.100(0)	
NI(2) - IN(2)	1.999(8)		NI(4) - IN(4)	2.002(8)	
Ni(1) - O(3)	- Ni(2)	96.9(3)	Ni(2) - O(3) -	Ni(3)	92.2(2)
Ni(1) - O(12)	- Ni(2)	93.6(3)	Ni(2) - O(6) -	Ni(3)	98.4(3)
Ni(1) - O(3)	- Ni(3)	99.3(3)	Ni(2) - O(6) -	Ni(4)	100.2(3)
Ni(1) - O(9)	- Ni(3)	99.5(3)	Ni(2) - O(12)	- Ni(4)	100.3(3)
Ni(1) - O(9)	- Ni(4)	92.3(2)	Ni(3) - O(6) -	Ni(4)	93.8(2)
Ni(1) - O(12)	- Ni(4)	97.8(3)	Ni(3) - O(9) -	Ni(4)	96.9(3)
O(2) - Ni(1)	- O(3) 1	71.6(3)	O(8) - Ni(3) -	O(9)	171.8(3)
O(5) - Ni(2)	- 0(6) 1	.68.5(3)	O(11) - Ni(4) -	O(12)	166.7(3)

Table S1 for selected Bond Lengths (Å) and Angles (deg) for complex (5)