Electronic Supplementary Information (ESI)

Tysonite type $Gd_{1-y}Ca_yF_{3-y}$ solid solution: hydrothermal synthesis and luminescence properties

Qi Zhao,^{ab} Baiqi Shao,^{ab} Wei Lü,^a Yongchao Jia,^{ab} Wenzhen Lv,^{ab} Mengmeng Jiao^{ab}, and Hongpeng You*^a

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

^bUniversity of the Chinese Academy of Sciences, Beijing 100049, P. R. China.

*Corresponding author: E-mail address: hpyou@ciac.ac.cn

	GdCl ₃ (1 mol·L ⁻¹)	$\begin{array}{c} CaCl_2 \\ (1 \mod L^{-1}) \end{array}$	Ethylene glycol (mL)	Deionized (mL)	water	Sodium fluoborate	Time/Temperature (°C/h)
T 1	(mL)	(mL)				(g)	
Typical	sample	1	20	10	0	1.5	1.00/0
I .			20	10	8	1.5	160/6
Effect o	1.60.16						
2	1	1	0	30	8	0.15	160/6
3	1	1	10	20	8	0.15	160/6
4	1	1	15	15	8	0.15	160/6
5	1	1	25	5	8	0.15	160/6
6	1	1	30	0	8	0.15	160/6
Effect o							
7	1	0	20	11	8	0.15	160/6
8	1	0.2	20	10.8	8	0.15	160/6
9	1	0.4	20	10.6	8	0.15	160/6
10	1	0.8	20	10.2	8	0.15	160/6
11	1	1.5	20	9.5	8	0.15	160/6
12	1	2	20	9	8	0.15	160/6
Effect o							
13	1	1	20	10	8	0.055	160/6
14	1	1	20	10	8	0.11	160/6
15	1	1	20	10	8	0.22	160/6
Effect o	f the reagents c	oncentration		•			
16	0.3	0.3	20	11.4	8	0.05	160/6
17	0.5	0.5	20	11	8	0.075	160/6
18	2	2	20	8	8	0.3	160/6
19	3	3	20	6	8	0.45	160/6
Effect o	f the time	•		L			
20	1	1	20	10	8	1.5	160/0.5
21	1	1	20	10	8	1.5	160/2
22	1	1	20	10	8	1.5	160/8
23	1	1	20	10	8	1.5	160/24
Effect o	f the temperatur	re	1				
24	1	1	20	10	8	1.5	120/6
25	1	1	20	10	8	1.5	140/6
26	1	1	20	10	8	1.5	180/6
27	1	1	20	10	8	1.5	200/6
Lumine	scence propertie	es			-		
28	Gd 0 98	1	20	10	8	1.5	160/6
2%	Th 0.02	-		10	5		10010
29	Gd 0 98	1	20	10	8	1.5	160/6
2%	Dv 0.02	-		10	5		10010
30	Gd 0 95	1	20	10	8	1.5	160/6
5%	Eu 0.05	-	_~		5		

	GdCl ₃	CaCl ₂	Ethylene	Deionized	water	Sodium	Time/Temperature
	$(1 \text{ mol} \cdot L^{-1})$	$(1 \text{ mol} \cdot L^2)$	glycol (mL)	(mL)		fluoborate	(°C/h)
	(mL)	') (mL)				(g)	
Lumines	scence properties	1	1	1	1	r	
31	Gd 0.999	1	20	9.981	8	1.5	160/6
0.1%	Eu 0.02 (0.05						
	$mol \cdot L^{-1}$)						
32	Gd 0.995	1	20	9.905	8	1.5	160/6
0.5%	Eu 0.1 (0.05						
	$mol \cdot L^{-1}$)						
33	Gd 0.99	1	20	9.81	8	1.5	160/6
1%	Eu 0.2 (0.05						
	$mol \cdot L^{-1}$)						
34	Gd 0.999	0	20	10.981	8	1.5	160/6
0.1%	Eu 0.02 (0.05						
	$mol \cdot L^{-1}$						
35	Gd 0.995	0	20	10.905	8	1.5	160/6
0.5%	Eu 0.1 (0.05						
	$mol \cdot L^{-1}$						
36	Gd 0.99	0	20	10.81	8	1.5	160/6
1%	Eu 0.2 (0.05						
	$mol \cdot L^{-1}$)						
37	Gd 0.95	0	20	11	8	1.5	160/6
5%	Eu 0.05						
38	Gd 0.95	0.4	20	10.6	8	1.5	160/6
5%	Eu 0.05		-		-		
39	Gd 0.95	0.8	20	10.2	8	1.5	160/6
5%	Eu 0.05		-		-		
40	Gd 0.99	0.4	20	10.41	8	1.5	160/6
1%	Eu 0.2 (0.05						
- / •	$\operatorname{mol} \cdot L^{-1}$						
41	Gd 0.99	0.8	20	10.01	8	1.5	160/6
1%	Eu 02 (005						
-/ •	$mol \cdot L^{-1}$)						

Fig. S1 EDS spectra of samples prepared with different amount of CaCl₂: (a) 0.2 mmol, (b) 0.4 mmol, (c) 0.8 mmol, (d) 1 mmol.

Fig. S2 Partial enlarged detail of XRD patterns of samples obtained with different amount of CaCl₂: (a) 0.4 mmol, (b) 0.8 mmol, (c) 1.0 mmol.

Fig. S3 SEM images of samples prepared with different temperature: (a) 120 $^{\circ}$ C, (b) 140 $^{\circ}$ C, (c) 180 $^{\circ}$ C, (d) 200 $^{\circ}$ C.

Fig. S4 XRD patterns of samples prepared with different temperature: (a) 120 $^{\circ}$ C, (b) 140 $^{\circ}$ C, (c) 180 $^{\circ}$ C, (d) 200 $^{\circ}$ C.

Fig. S5 SEM images of samples prepared with different reaction time: (a) 0.5 h, (b) 2 h, (c) 8 h, (d) 24 h.

Fig. S6 XRD pattersn of samples prepared with different reaction time: (a) 0.5 h, (b) 2 h, (c) 8 h, (d) 24 h

Fig. S7 Emission spectra of (a) hexagonal $Gd_{1-y}Ca_yF_{3-y}$: 0.1 mol% Eu^{3+} and orthorhombic (b) GdF_3 : Eu^{3+} excited at 272 nm and 396 nm. (c) Excitation spectra of hexagonal and orthorhombic samples monitored at 590 and 592 nm, respectively.

 $I^{\rm H}_{277/397} = 62.10$ $I^{\rm O}_{277/397} = 20.44$

Fig. S8 Emission spectra of (a) hexagonal $Gd_{1-y}Ca_yF_{3-y}$: 0.5 mol% Eu^{3+} and orthorhombic (b) GdF_3 : Eu^{3+} excited at 272 nm and 396 nm. (c) Excitation spectra of hexagonal and orthorhombic samples monitored at 590 and 592 nm, respectively.

$$I^{\rm H}_{277/397} = 35.51$$
$$I^{\rm O}_{277/397} = 18.86$$

Fig. S9 Emission spectra of (a) hexagonal $Gd_{1-y}Ca_yF_{3-y}$: 1 mol% Eu^{3+} and orthorhombic (b) $GdF_3:Eu^{3+}$ excited at 272 nm and 396 nm. (c) Excitation spectra of hexagonal and orthorhombic samples monitored at 590 and 592 nm, respectively.

 $I^{\rm H}_{277/397} = 23.98$ $I^{\rm O}_{277/397} = 13.77$