Electronic Supplementary Information for

## Syntheses and characterizations of polymeric silver iodoplumbates, and iodoplumbates with lanthanide complexes

Chunying Tang, Fang Wang, Dingxian Jia\*, Wenqing Jiang, and Yong Zhang

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

| Table 51. Selected Dond Lengths (A) and angles ( ) for 1 |            |                     |            |  |
|----------------------------------------------------------|------------|---------------------|------------|--|
| Pb(1)–I(1)                                               | 3.3747(11) | Pb(1)–I(2)          | 3.2181(13) |  |
| Pb(1)–I(3)                                               | 2.9798(13) | Pb(1)–I(4)          | 3.3023(14) |  |
| Pb(1)–I(1)#1                                             | 3.5876(13) | Pb(1)–I(5)          | 3.1193(6)  |  |
| Pb(1)-Ag(1)#1                                            | 3.4767(17) |                     |            |  |
| Ag(1)–I(1)                                               | 3.083(2)   | Ag(1)–I(1)#1        | 2.971(2)   |  |
| Ag(1)–I(2)                                               | 2.7313(19) | Ag(1)–I(4)#1        | 2.7305(19) |  |
| La(1)-O(1)                                               | 2.458(18)  | La(1)–O(2)          | 2.449(17)  |  |
| La(1) - O(3)                                             | 2.459(19)  | La(1)–O(4)          | 2.439(14)  |  |
|                                                          |            |                     |            |  |
| I(1)-Pb(1)-I(2)                                          | 87.97(3)   | I(1)-Pb(1)-I(3)     | 86.84(3)   |  |
| I(1)-Pb(1)-I(4)                                          | 91.34(3)   | I(1)-Pb(1)-I(5)     | 177.73(3)  |  |
| I(2) - Pb(1) - I(3)                                      | 98.21(4)   | I(2) - Pb(1) - I(4) | 164.67(4)  |  |
| I(2)-Pb(1)-I(5)                                          | 90.81(2)   | I(3)-Pb(1)-I(4)     | 97.05(4)   |  |
| I(3)–Pb(1)–I(5)                                          | 95.22(3)   | I(4)–Pb(1)–I(5)     | 89.33(2)   |  |
| I(1)#1–Pb(1)–I(2)                                        | 83.53(3)   | I(1)#1–Pb(1)–I(3)   | 161.13(3)  |  |
| I(1)#1–Pb(1)–I(4)                                        | 81.54(3)   | I(1)#1–Pb(1)–I(5)   | 103.56(3)  |  |
| I(1)#1–Pb(1)–I(1)                                        | 74.41(3)   | I(1)–Ag(1)–I(1)#1   | 88.19(5)   |  |
| I(1)–Ag(1)–I(2)                                          | 103.78(7)  | I(1)#1-Ag(1)-I(2)   | 105.50(6)  |  |
| I(1)-Ag(1)-I(4)#1                                        | 101.39(7)  | I(1)#1-Ag(1)-I(4)#1 | 113.76(7)  |  |
| I(2)–Ag(1)–I(4)#1                                        | 133.53(8)  |                     |            |  |
| Ag(1)–I(1)–Pb(1)                                         | 66.95(4)   | Ag(1)#1–I(1)–Pb(1)  | 66.09(4)   |  |
| Ag(1)–I(2)–Pb(1)                                         | 73.24(5)   | Ag(1)#1–I(4)–Pb(1)  | 69.64(4)   |  |
| Pb(1)#3–I(5)–Pb(1)                                       | 180.0      | Ag(1)–I(1)–Ag(1)#1  | 91.81(5)   |  |
| O(1)–La(1)–O(2)                                          | 74.3(6)    | O(1)-La(1)-O(1)#2   | 81.4(11)   |  |

Table S1. Selected Bond Lengths (Å) and angles (°) for 1

| O(1)–La(1)–O(3)   | 132.7(9)  | O(1)-La(1)-O(2)#2 | 75.2(6)   |
|-------------------|-----------|-------------------|-----------|
| O(1)–La(1)–O(4)   | 66.4(9)   | O(1)-La(1)-O(3)#2 | 120.9(6)  |
| O(2)–La(1)–O(2)#2 | 139.4(9)  | O(1)-La(1)-O(4)#2 | 147.4(10) |
| O(2)–La(1)–O(3)#2 | 72.8(7)   | O(2)–La(1)–O(3)   | 147.3(7)  |
| O(2)–La(1)–O(4)#2 | 92.0(8)   | O(2)–La(1)–O(4)   | 99.6(7)   |
| O(3)–La(1)–O(4)   | 80.9(9)   | O(3)–La(1)–O(3)#2 | 76.3(10)  |
| O(4)-La(1)-O(4)#2 | 146.1(15) | O(3)-La(1)-O(4)#2 | 72.5(10)  |

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2, -y+1/2, -z; #2 -x+2, y,

-z+1/2; #3 -x+1/2, -y+3/2, -z.

| Table 52           | . Selected Doll | Lengths (A) and angles | $()$ 10f $\mathbf{Z}$ |
|--------------------|-----------------|------------------------|-----------------------|
| Pb(1)–I(1)         | 3.3905(17)      | Pb(1)–I(2)             | 3.2538(14)            |
| Pb(1)–I(3)         | 2.9879(18)      | Pb(1)–I(4)             | 3.0928(8)             |
| Pb(1)–I(1)#1       | 3.5831(8)       | Pb(1)–Ag#1             | 3.5492(8)             |
| Ag(1)–I(1)         | 3.036(2)        | Ag(1)–I(2)             | 2.7184(16)            |
| Gd(1)–O(1)         | 2.383(12)       | Gd(1)–O(2)             | 2.331(13)             |
|                    |                 |                        |                       |
| I(1)–Pb(1)–I(4)    | 168.46(4)       | I(2)-Pb(1)-I(2)#1      | 169.09(6)             |
| I(2)–Pb(1)–I(3)    | 95.10(3)        | I(2)–Pb(1)–I(4)        | 91.47(3)              |
| I(3)–Pb(1)–I(4)    | 95.19(4)        | I(1)#1–Pb(1)–I(3)      | 170.20(4)             |
| I(1)#1–Pb(1)–I(4)  | 94.61(4)        | I(1)#1–Pb(1)–I(2)      | 84.65(4)              |
| I(1)#1–Pb(1)–I(1)  | 73.85(4)        |                        |                       |
| I(1)–Ag(1)–I(2)    | 105.88(5)       | I(1)-Ag(1)-I(1)#3      | 87.34(8)              |
| I(2)-Ag(1)-I(2)#2  | 134.87(11)      | I(1)-Ag(1)-I(2)#2      | 106.35(5)             |
| Ag(1)–I(1)–Ag(1)#3 | 92.66(8)        | Ag(1)–I(1)–Pb(1)       | 66.78(3)              |
| Pb(1)–I(4)–Pb(1)#4 | 180.0           | Ag(1)–I(2)–Pb(1)       | 72.29(6)              |
| O(1)-Gd(1)-O(1)#6  | 137.2(6)        | O(1)-Gd(1)-O(1)#5      | 121.2(7)              |
| O(1)-Gd(1)-O(2)    | 71.2(5)         | O(1)-Gd(1)-O(1)#7      | 75.4(7)               |
| O(1)-Gd(1)-O(2)#6  | 77.2(6)         | O(1)-Gd(1)-O(2)#5      | 74.9(5)               |
| O(2)-Gd(1)-O(2)#5  | 107.1(10)       | O(1)-Gd(1)-O(2)#7      | 143.5(5)              |
| O(2)-Gd(1)-O(2)#7  | 144.5(8)        | O(2)-Gd(1)-O(2)#6      | 83.8(9)               |
|                    |                 | 1 1                    | 1 110 010             |

Table S2. Selected Bond Lengths (Å) and angles (°) for 2

Symmetry transformations used to generate equivalent atoms: #1 x, y, -z+1; #2 -x+3/2, -y+1/2, z; #3 -x+3/2, -y+1/2, -z+1; #4 -x+1/2, -y+1/2, -z+1; #5 -x, -y+1, z; #6 x, -y+1, -z+3/2; #7 -x, y, -z+3/2.

| Pb(1)–I(1)         | 3.2555(12) | Pb(1)–I(2)        | 3.3889(14) |
|--------------------|------------|-------------------|------------|
| Pb(1)–I(3)         | 2.9909(15) | Pb(1)–I(4)        | 3.1122(8)  |
| Pb(1)–I(1)#3       | 3.5943(12) | Pb(1)-Ag#1        | 3.5612(8)  |
| Ag(1)–I(1)         | 2.7107(13) | Ag(1)–I(2)        | 3.0436(17) |
| Tm(1)–O(1)         | 2.235(9)   | Tm(1)–O(2)        | 2.301(10)  |
|                    |            |                   |            |
| I(1)–Pb(1)–I(1)#1  | 168.60(4)  | I(1)-Pb(1)-I(2)   | 87.48(2)   |
| I(1)-Pb(1)-I(3)    | 95.35(2)   | I(1)-Pb(1)-I(4)   | 91.44(2)   |
| I(2)–Pb(1)–I(3)    | 95.99(4)   | I(2)–Pb(1)–I(4)   | 168.29(3)  |
| I(3)–Pb(1)–I(4)    | 95.72(3)   | I(2)–Pb(1)–I(2)#3 | 73.71(2)   |
| I(1)–Pb(1)–I(2)#3  | 84.38(2)   | I(3)–Pb(1)–I(2)#3 | 169.71(2)  |
| I(4)–Pb(1)–I(2)#3  | 94.57(2)   | I(1)-Ag(1)-I(1)#2 | 135.22(9)  |
| I(1)–Ag(1)–I(2)    | 105.83(4)  | I(1)-Ag(1)-I(2)#3 | 106.24(4)  |
| I(2)-Ag(1)-I(2)#3  | 87.04(6)   | Ag(1)–I(1)–Pb(1)  | 72.64(5)   |
| Ag(1)–I(2)–Ag(1)#3 | 92.96(6)   | Ag(1)–I(2)–Pb(1)  | 66.97(2)   |
| Pb(1)–I(4)–Pb(1)#4 | 180.00(2)  | O(1)–Tm(1)–O(1)#5 | 83.8(7)    |
| O(1)-Tm(1)-O(1)#6  | 106.6(7)   | O(1)-Tm(1)-O(1)#7 | 145.2(8)   |
| O(1)–Tm(1)–O(2)    | 78.3(5)    | O(1)–Tm(1)–O(2)#5 | 71.7(6)    |
| O(1)-Tm(1)-O(2)#6  | 142.3(6)   | O(1)-Tm(1)-O(2)#7 | 74.1(5)    |
| O(2)–Tm(1)–O(2)#5  | 139.4(8)   | O(2)–Tm(1)–O(2)#6 | 120.9(7)   |
| O(2)–Tm(1)–O(2)#7  | 74.2(8)    |                   |            |

## Table S3. Selected Bond Lengths (Å) and angles (°) for 3

Symmetry transformations used to generate equivalent atoms: #1 x, y, -z; #2 -x+1/2, -y+1/2, z; #3 -x+1/2, -y+1/2, -z; #4 -x-1/2, -y+1/2, -z; #5 x, -y+1, -z+1/2; #6 -x, -y+1, z; #7 -x, y, -z+1/2.

|                    |           |                    | -         |
|--------------------|-----------|--------------------|-----------|
| Pb(1)–I(1)         | 3.162(3)  | Pb(1)–I(2)         | 3.194(3)  |
| Pb(1)–I(3)         | 3.326(3)  | Pb(1)–I(4)         | 3.351(3)  |
| Pb(1)–I(5)         | 2.982(3)  | Pb(1)–I(6)         | 3.639(3)  |
| Pb(2)–I(1)         | 3.197(3)  | Pb(2)–I(6)         | 3.226(2)  |
| Pb(2)–I(2)         | 3.183(3)  | Pb(2)–I(8)         | 3.242(3)  |
| Pb(2)–I(7)         | 3.292(3)  | Pb(2)–I(11)#1      | 3.273(2)  |
| Pb(3)–I(7)         | 3.096(3)  | Pb(3)–I(9)         | 2.997(3)  |
| Pb(3)–I(8)         | 3.237(3)  | Pb(3)–I(11) #1     | 3.505(3)  |
| Pb(3)–I(10)#1      | 3.281(3)  | Pb(3)–O(9)         | 2.694(19) |
| Pb(4)–I(3)         | 3.230(3)  | Pb(4)–I(4)         | 3.046(3)  |
| Pb(4)–I(6)         | 3.288(2)  | Pb(4)–I(10)        | 3.176(3)  |
| Pb(4)–I(11)        | 3.233(2)  | Pb(4)-O(9)#2       | 2.748(19) |
| La(1)–O(1)         | 2.40(2)   | La(1)–O(2)         | 2.520(19) |
| La(1)–O(3)         | 2.465(16) | La(1)–O(4)         | 2.413(19) |
| La(1)–O(5)         | 2.476(17) | La(1)–O(6)         | 2.433(19) |
| La(1)–O(7)         | 2.60(2)   | La(1)–O(8)         | 2.46(2)   |
|                    |           |                    |           |
| I(1)-Pb(1)-I(2)    | 86.42(7)  | I(1)-Pb(1)-I(3)    | 95.31(7)  |
| I(1)-Pb(1)-I(4)    | 164.73(8) | I(1)-Pb(1)-I(5)    | 93.23(8)  |
| I(2)-Pb(1)-I(3)    | 160.75(8) | I(2)-Pb(1)-I(4)    | 88.85(7)  |
| I(2)–Pb(1)–I(5)    | 99.01(9)  | I(3)–Pb(1)–I(4)    | 84.49(7)  |
| I(1)-Pb(1)-I(6)    | 81.79(8)  | I(2)-Pb(1)-I(6)    | 82.14(8)  |
| I(3)–Pb(1)–I(6)    | 79.15(8)  | I(4)–Pb(1)–I(6)    | 83.19(8)  |
| I(5)–Pb(1)–I(6)    | 174.81(8) |                    |           |
| I(3)–Pb(1)–I(5)    | 100.02(9) | I(4)–Pb(1)–I(5)    | 101.85(9) |
| I(1)–Pb(2)–I(2)    | 86.03(7)  | I(1)–Pb(2)–I(6)    | 88.12(7)  |
| I(1)–Pb(2)–I(7)    | 85.68(7)  | I(1)–Pb(2)–I(8)    | 169.84(8) |
| I(1)–Pb(2)–I(11)#1 | 98.07(7)  | I(2)–Pb(2)–I(6)    | 89.25(7)  |
| I(2)–Pb(2)–I(7)    | 168.02(8) | I(2)–Pb(2)–I(8)    | 103.75(8) |
| I(2)–Pb(2)–I(11)#1 | 85.72(6)  | I(6)–Pb(2)–I(7)    | 99.10(7)  |
| I(6)–Pb(2)–I(8)    | 89.25(7)  | I(6)–Pb(2)–I(11)#1 | 171.72(8) |
| I(7)–Pb(2)–I(8)    | 85.05(7)  | I(7)–Pb(2)–I(11)#1 | 86.90(6)  |
| I(8)–Pb(2)–I(11)#1 | 85.57(7)  | I(7)–Pb(3)–I(8)    | 88.42(7)  |
| I(7)–Pb(3)–I(9)    | 97.14(8)  | I(7)–Pb(3)–I(10)#1 | 91.84(7)  |
| I(8)–Pb(3)–I(9)    | 96.09(8)  | I(8)–Pb(3)–I(10)#1 | 165.20(8) |
| I(9)–Pb(3)–I(10)#1 | 98.56(8)  | O(9)–Pb(3)–I(7)    | 164.4(4)  |
| O(9)–Pb(3)–I(8)    | 97.2(4)   | O(9)–Pb(3)–I(9)    | 96.7(5)   |
| I(7)–Pb(3)–I(11)#1 | 86.07(8)  | I(8)–Pb(3)–I(11)#1 | 81.94(8)  |

Table S4. Selected Bond Lengths (Å) and angles (°) for 4

| I(9)–Pb(3)–I(11)#1  | 176.19(8) | I(10)#1–Pb(3)–I(11)#1 | 91.84(8)  |
|---------------------|-----------|-----------------------|-----------|
| O(9)–Pb(3)–I(11)#1  | 80.34(8)  |                       |           |
| O(9)–Pb(3)–I(10)#1  | 79.0(4)   | I(3)–Pb(4)–I(4)       | 91.29(8)  |
| I(3)–Pb(4)–I(6)     | 85.98(7)  | I(3)–Pb(4)–I(10)      | 173.08(8) |
| I(3)–Pb(4)–I(11)    | 91.08(7)  | I(4)–Pb(4)–I(6)       | 94.29(7)  |
| I(4)-Pb(4)-I(10)    | 95.58(8)  | I(4)–Pb(4)–I(11)      | 91.72(7)  |
| I(6)-Pb(4)-I(10)    | 92.68(7)  | I(6)–Pb(4)–I(11)      | 173.36(7) |
| I(10)–Pb(4)–I(11)   | 89.53(6)  | O(9)#2–Pb(4)–I(3)     | 93.0(4)   |
| O(9)#2–Pb(4)–I(4)   | 174.5(4)  | O(9)#2–Pb(4)–I(6)     | 89.5(5)   |
| O(9)#2–Pb(4)–I(10)  | 80.2(4)   | O(9)#2–Pb(4)–I(11)    | 84.7(5)   |
| Pb(1)–I(1)–Pb(2)    | 79.00(6)  | Pb(1)–I(2)–Pb(2)      | 78.74(6)  |
| Pb(1)–I(3)–Pb(4)    | 76.20(6)  | Pb(1)–I(4)–Pb(4)      | 78.31(6)  |
| Pb(2)–I(6)–Pb(4)    | 142.20(8) | Pb(2)–I(7)–Pb(3)      | 78.69(6)  |
| Pb(2)–I(8)–Pb(3)    | 77.45(6)  | Pb(3)#2–I(10)–Pb(4)   | 75.75(6)  |
| Pb(2)#2–I(11)–Pb(4) | 145.33(8) | O(1)–La(1)–O(2)       | 76.1(8)   |
| O(1)–La(1)–O(3)     | 72.4(10)  | O(1)–La(1)–O(4)       | 76.6(10)  |
| O(1)–La(1)–O(5)     | 73.2(8)   | O(1)–La(1)–O(6)       | 142.1(9)  |
| O(1)–La(1)–O(7)     | 120.7(10) | O(1)–La(1)–O(8)       | 135.7(9)  |
| O(2)–La(1)–O(3)     | 86.1(8)   | O(2)–La(1)–O(4)       | 74.6(7)   |
| O(2)–La(1)–O(5)     | 142.8(7)  | O(2)–La(1)–O(6)       | 111.0(9)  |
| O(2)–La(1)–O(7)     | 144.6(8)  | O(2)–La(1)–O(8)       | 72.5(8)   |
| O(3)–La(1)–O(4)     | 146.5(9)  | O(3)–La(1)–O(5)       | 103.8(9)  |
| O(3)–La(1)–O(6)     | 143.2(9)  | O(3)–La(1)–O(7)       | 72.1(9)   |
| O(3)–La(1)–O(8)     | 75.0(9)   | O(4)–La(1)–O(5)       | 78.4(8)   |
| O(4)–La(1)–O(6)     | 70.2(10)  | O(4)–La(1)–O(7)       | 136.8(9)  |
| O(4)–La(1)–O(8)     | 122.4(9)  | O(5)–La(1)–O(6)       | 82.5(8)   |
| O(5)–La(1)–O(7)     | 71.2(8)   | O(5)–La(1)–O(8)       | 144.6(8)  |
| O(6)–La(1)–O(7)     | 76.0(10)  | O(6)–La(1)–O(8)       | 79.4(9)   |
| O(7)–La(1)–O(8)     | 75.0(9)   | Pb(3)-O(9)-Pb(4)#1    | 93.5(5)   |

Symmetry transformations used to generate equivalent atoms: #1 x, -y+3/2, z-1/2; #2 x, -y+3/2,

z+1/2.

| Table 55. Sele   | cica Dona Lei | ignis (ii) and angles ( ) i | 015       |
|------------------|---------------|-----------------------------|-----------|
| Pb(1)–I(1)       | 3.153(2)      | Pb(1)–I(2)                  | 3.194(2)  |
| Pb(1)–I(3)       | 3.648(3)      | Pb(1)–I(4)                  | 3.315(2)  |
| Pb(1)–I(5)       | 3.345(2)      | Pb(1)–I(6)                  | 2.976(3)  |
| Pb(2)–I(1)       | 3.192(2)      | Pb(2)–I(2)                  | 3.188(2)  |
| Pb(2)–I(3)       | 3.225(2)      | Pb(2)–I(7)                  | 3.278(3)  |
| Pb(2)–I(8)       | 3.240(2)      | Pb(2)–I(9)                  | 3.258(2)  |
| Pb(3)–I(7)       | 3.083(2)      | Pb(3)–I(8)                  | 3.234(2)  |
| Pb(3)–I(9)       | 3.509(2)      | Pb(3)–I(10)                 | 3.275(2)  |
| Pb(3)–I(11)      | 2.988(3)      | Pb(3)–O(9)                  | 2.696(19) |
| Pb(4)–I(3)#1     | 3.272(2)      | Pb(4)–I(4)#1                | 3.233(2)  |
| Pb(4)–I(5)#1     | 3.042(2)      | Pb(4)–I(9)                  | 3.231(2)  |
| Pb(4)–I(10)      | 3.180(2)      | Pb(4)–O(9)                  | 2.72(2)   |
| Pr(1)–O(1)       | 2.46(2)       | Pr(1)–O(2)                  | 2.437(18) |
| Pr(1)–O(3)       | 2.45(2)       | Pr(1)–O(4)                  | 2.39(2)   |
| Pr(1)–O(5)       | 2.41(2)       | Pr(1)–O(6)                  | 2.444(19) |
| Pr(1)–O(7)       | 2.46(3)       | Pr(1)–O(8)                  | 2.37(2)   |
|                  |               |                             |           |
| I(1)-Pb(1)-I(2)  | 86.29(6)      | I(1)-Pb(1)-I(3)             | 81.68(6)  |
| I(1)-Pb(1)-I(4)  | 95.18(6)      | I(1)-Pb(1)-I(5)             | 164.21(7) |
| I(1)–Pb(1)–I(6)  | 93.30(8)      | I(2)-Pb(1)-I(3)             | 82.13(6)  |
| I(2)-Pb(1)-I(4)  | 160.68(7)     | I(2)-Pb(1)-I(5)             | 88.54(6)  |
| I(2)–Pb(1)–I(6)  | 99.07(8)      | I(3)-Pb(1)-I(4)             | 79.04(6)  |
| I(3)–Pb(1)–I(5)  | 82.84(6)      | I(3)–Pb(1)–I(6)             | 174.77(8) |
| I(4)–Pb(1)–I(5)  | 84.89(6)      | I(4) - Pb(1) - I(6)         | 100.07(8) |
| I(5)–Pb(1)–I(6)  | 102.25(8)     | I(1)–Pb(2)–I(2)             | 85.75(6)  |
| I(1)–Pb(2)–I(3)  | 88.15(6)      | I(1)–Pb(2)–I(7)             | 85.81(6)  |
| I(1)–Pb(2)–I(8)  | 169.98(7)     | I(1)–Pb(2)–I(9)             | 97.92(6)  |
| I(2)–Pb(2)–I(3)  | 89.33(6)      | I(2)–Pb(2)–I(7)             | 168.12(7) |
| I(2)–Pb(2)–I(8)  | 103.87(7)     | I(2)–Pb(2)–I(9)             | 85.49(6)  |
| I(3)–Pb(2)–I(7)  | 98.75(7)      | I(3)–Pb(2)–I(8)             | 89.18(6)  |
| I(3)–Pb(2)–I(9)  | 171.68(6)     | I(7)–Pb(2)–I(8)             | 85.05(7)  |
| I(7)–Pb(2)–I(9)  | 87.40(6)      | I(8)-Pb(2)-I(9)             | 85.77(6)  |
| I(7)–Pb(3)–I(8)  | 88.42(7)      | I(7)–Pb(3)–I(9)             | 86.21(6)  |
| I(7)–Pb(3)–I(10) | 91.87(7)      | I(7)–Pb(3)–I(11)            | 96.98(8)  |
| I(8)–Pb(3)–I(9)  | 81.85(6)      | I(8)–Pb(3)–I(10)            | 165.24(7) |
| I(8)–Pb(3)–I(11) | 96.12(8)      | I(9)–Pb(3)–I(10)            | 83.44(6)  |
| I(9)–Pb(3)–I(11) | 176.19(7)     | I(10)–Pb(3)–I(11)           | 98.49(8)  |
| O(9)–Pb(3)–I(7)  | 164.1(5)      | O(9)–Pb(3)–I(8)             | 97.0(4)   |

Table S5. Selected Bond Lengths (Å) and angles (°) for 5

| O(9)–Pb(3)–I(9)     | 79.8(5)   | O(9)–Pb(3)–I(10)    | 79.1(4)   |
|---------------------|-----------|---------------------|-----------|
| O(9)–Pb(3)–I(11)    | 97.3(5)   | I(3)#1-Pb(4)-I(4)#1 | 86.05(6)  |
| I(3)#1-Pb(4)-I(5)#1 | 94.31(7)  | I(3)#1-Pb(4)-I(9)   | 173.12(6) |
| I(3)#1–Pb(4)–I(10)  | 93.00(6)  | I(4)#1-Pb(4)-I(5)#1 | 91.46(7)  |
| I(4)#1-Pb(4)-I(9)   | 90.60(6)  | I(4)#1-Pb(4)-I(10)  | 173.21(7) |
| I(5)#1-Pb(4)-I(9)   | 91.77(7)  | I(5)#1-Pb(4)-I(10)  | 95.32(7)  |
| I(9)–Pb(4)–I(10)    | 89.62(6)  | O(9)-Pb(4)-I(3)#1   | 89.3(4)   |
| O(9)-Pb(4)-I(4)#1   | 92.7(5)   | O(9)-Pb(4)-I(5)#1   | 174.7(4)  |
| O(9)–Pb(4)–I(9)     | 84.8(4)   | O(9)–Pb(4)–I(10)    | 80.6(5)   |
| Pb(1)–I(1)–Pb(2)    | 79.31(5)  | Pb(1)–I(2)–Pb(2)    | 78.76(6)  |
| Pb(1)–I(3)–Pb(2)    | 71.89(5)  | Pb(1)–I(3)–Pb(4)#2  | 71.17(5)  |
| Pb(2)–I(3)–Pb(4)#2  | 142.08(7) | Pb(1)–I(4)–Pb(4)#2  | 76.15(5)  |
| Pb(1)–I(5)–Pb(4)#2  | 78.29(6)  | Pb(2)–I(7)–Pb(3)    | 78.72(6)  |
| Pb(2)–I(8)–Pb(3)    | 77.14(5)  | Pb(2)–I(9)–Pb(3)    | 73.12(5)  |
| Pb(2)–I(9)–Pb(4)    | 144.81(7) | Pb(3)–I(9)–Pb(4)    | 71.69(5)  |
| Pb(3)–I(10)–Pb(4)   | 75.53(5)  | O(1)–Pr(1)–O(2)     | 71.0(7)   |
| O(1)–Pr(1)–O(3)     | 146.8(9)  | O(1)–Pr(1)–O(4)     | 135.0(8)  |
| O(1)–Pr(1)–O(5)     | 122.5(8)  | O(1)–Pr(1)–O(6)     | 76.7(8)   |
| O(1)–Pr(1)–O(7)     | 75.2(9)   | O(1)–Pr(1)–O(8)     | 78.8(9)   |
| O(2)–Pr(1)–O(3)     | 142.1(8)  | O(2)–Pr(1)–O(4)     | 76.5(7)   |
| O(2)–Pr(1)–O(5)     | 73.2(7)   | O(2)–Pr(1)–O(6)     | 88.5(9)   |
| O(2)–Pr(1)–O(7)     | 144.3(10) | O(2)–Pr(1)–O(8)     | 109.7(8)  |
| O(3)–Pr(1)–O(4)     | 72.0(8)   | O(3)–Pr(1)–O(5)     | 78.3(9)   |
| O(3)–Pr(1)–O(6)     | 101.1(10) | O(3)–Pr(1)–O(7)     | 72.7(11)  |
| O(3)–Pr(1)–O(8)     | 84.6(9)   | O(4)–Pr(1)–O(5)     | 74.2(9)   |
| O(4)–Pr(1)–O(6)     | 72.2(8)   | O(4)–Pr(1)–O(7)     | 123.4(10) |
| O(4)–Pr(1)–O(8)     | 142.6(9)  | O(5)–Pr(1)–O(6)     | 144.7(10) |
| O(5)–Pr(1)–O(7)     | 137.1(12) | O(5)–Pr(1)–O(8)     | 72.8(11)  |
| O(6)–Pr(1)–O(7)     | 73.0(12)  | O(6)-Pr(1)-O(8)     | 142.5(10) |
| O(7)–Pr(1)–O(8)     | 73.6(12)  |                     |           |

Symmetry transformations used to generate equivalent atoms: #1 x, -y+3/2, z-1/2; #2 x, -y+3/2, z+1/2.

|                      | leetea Bolla Eel |                    |             |
|----------------------|------------------|--------------------|-------------|
| Pb(1)–I(1)           | 3.1945(15)       | Pb(1)–I(2)         | 3.1696(14)  |
| Pb(1)–I(3)           | 2.9792(16)       | Pb(1)–I(4)         | 3.3103(15)  |
| Pb(1)–I(5)           | 3.3294(15)       | Pb(1)–I(8)         | 3.6625 (16) |
| Pb(2)–I(1)           | 3.1964(15)       | Pb(2)–I(2)         | 3.1804(14)  |
| Pb(2)–I(7)           | 3.2441(15)       | Pb(2)–I(6)         | 3.2943(16)  |
| Pb(2)–I(10)#1        | 3.2644(13)       | Pb(2)–I(8)         | 3.2074(13)  |
| Pb(3)–I(6)           | 3.096(3)         | Pb(3)–I(7)         | 3.2141(15)  |
| Pb(3)–I(9)           | 3.0073(15)       | Pb(3)–I(11)#1      | 3.3076(15)  |
| Pb(3)–I(10)#1        | 3.5064(15)       | Pb(3)-O(9)#1       | 2.69(2)     |
| Pb(4)–I(4)           | 3.2492(15)       | Pb(4)–I(5)         | 3.0494(15)  |
| Pb(4)–I(8)           | 3.2659(13)       | Pb(4)–I(10)        | 3.2211(13)  |
| Pb(4)–I(11)          | 3.1518(15)       | Pb(4)O(9)          | 2.712(19)   |
| Nd(1)-O(1)           | 2.443(12)        | Nd(1)–O(2)         | 2.429(13)   |
| Nd(1)-O(3)           | 2.426(15)        | Nd(1)–O(4)         | 2.431(14)   |
| Nd(1)-O(5)           | 2.451(16)        | Nd(1)–O(6)         | 2.412(15)   |
| Nd(1)–O(7)           | 2.415(12)        | Nd(1)–O(8)         | 2.401(12)   |
|                      |                  |                    |             |
| I(1)-Pb(1)-I(2)      | 86.58(4)         | I(1)-Pb(1)-I(3)    | 97.68(4)    |
| I(1)-Pb(1)-I(4)      | 161.63(4)        | I(1)–Pb(1)–I(5)    | 89.22(4)    |
| I(2)-Pb(1)-I(3)      | 93.79(4)         | I(2)–Pb(1)–I(4)    | 94.12(4)    |
| I(2)-Pb(1)-I(5)      | 164.69(4)        | I(3)-Pb(1)-I(4)    | 100.58(5)   |
| I(3)–Pb(1)–I(5)      | 101.36(4)        | I(4)–Pb(1)–I(5)    | 85.31(4)    |
| I(1)–Pb(1)–I(8)      | 82.38(4)         | I(2)–Pb(1)–I(8)    | 81.16(4)    |
| I(3)–Pb(1)–I(8)      | 174.95(4)        | I(4)–Pb(1)–I(8)    | 79.60(4)    |
| I(5)–Pb(1)–I(8)      | 83.69(4)         |                    |             |
| I(1)–Pb(2)–I(2)      | 86.36(4)         | I(1)–Pb(2)–I(6)    | 167.34(4)   |
| I(1)–Pb(2)–I(7)      | 103.36(4)        | I(1)–Pb(2)–I(8)    | 90.01(4)    |
| I(1)–Pb(2)–I(10)#1   | 84.27(4)         | I(2)–Pb(2)–I(6)    | 85.68(4)    |
| I(2)–Pb(2)–I(7)      | 169.85(4)        | I(2)–Pb(2)–I(8)    | 88.56(4)    |
| I(2)–Pb(2)–I(10)#1   | 98.94(4)         | I(6)–Pb(2)–I(7)    | 85.21(4)    |
| I(6)–Pb(2)–I(8)      | 99.61(4)         | I(6)–Pb(2)–I(10)#1 | 87.25(4)    |
| I(7)–Pb(2)–I(8)      | 88.54(4)         | I(7)–Pb(2)–I(10)#1 | 85.11(4)    |
| I(8)–Pb(2)–I(10)#1   | 170.24(4)        | I(6)–Pb(3)–I(7)    | 89.21(4)    |
| I(6)–Pb(3)–I(9)      | 96.05(4)         | I(6)–Pb(3)–I(11)#1 | 91.71(4)    |
| I(7)–Pb(3)–I(9)      | 94.89(4)         | I(7)–Pb(3)–I(11)#1 | 165.11(4)   |
| I(9)–Pb(3)–I(11)#1   | 99.79(4)         | O(9)#1–Pb(3)–I(6)  | 163.3(4)    |
| O(9)#1–Pb(3)–I(7)    | 97.8(4)          | O(9)#1–Pb(3)–I(9)  | 98.4(5)     |
| O(9)#1–Pb(3)–I(11)#1 | 77.7(4)          | I(6)–Pb(3)–I(10)#1 | 86.42(4)    |

Table S6. Selected Bond Lengths (Å) and angles (°) for 6

| I(7)–Pb(3)–I(10)#1    | 81.71(4)  | I(9)–Pb(3)–I(10)#1   | 175.79(4) |
|-----------------------|-----------|----------------------|-----------|
| I(11)#1–Pb(3)–I(10)#1 | 83.51(4)  | O(9)#1-Pb(3)-I(10)#1 | 79.64(4)  |
| I(4)–Pb(4)–I(5)       | 91.11(4)  |                      |           |
| I(4)–Pb(4)–I(8)       | 86.67(4)  | I(4)–Pb(4)–I(10)     | 89.99(4)  |
| I(4)–Pb(4)–I(11)      | 173.78(5) | I(5)–Pb(4)–I(8)      | 95.33(4)  |
| I(5)–Pb(4)–I(10)      | 91.70(4)  | I(5)–Pb(4)–I(11)     | 95.02(4)  |
| I(8)–Pb(4)–I(10)      | 172.27(4) | I(8)–Pb(4)–I(11)     | 91.74(4)  |
| I(10)–Pb(4)–I(11)     | 90.84(4)  | O(9)–Pb(4)–I(4)      | 93.7(4)   |
| O(9)–Pb(4)–I(5)       | 174.0(5)  | O(9)–Pb(4)–I(8)      | 88.5(5)   |
| O(9)–Pb(4)–I(10)      | 84.7(5)   | O(9)–Pb(4)–I(11)     | 80.2(4)   |
| Pb(1)–I(1)–Pb(2)      | 78.28(3)  | Pb(1)–I(2)–Pb(2)     | 78.88(3)  |
| Pb(1)–I(4)–Pb(4)      | 75.34(3)  | Pb(1)–I(5)–Pb(4)     | 77.74(4)  |
| Pb(2)–I(6)–Pb(3)      | 78.36(4)  | Pb(2)–I(7)–Pb(3)     | 77.34(3)  |
| Pb(2)–I(8)–Pb(4)      | 141.17(5) | Pb(2)#2–I(10)–Pb(4)  | 144.97(4) |
| Pb(3)#2–I(11)–Pb(4)   | 75.53(3)  | O(1)-Nd(1)-O(2)      | 76.2(4)   |
| O(1)-Nd(1)-O(3)       | 84.0(5)   | O(1)-Nd(1)-O(4)      | 144.2(4)  |
| O(1)-Nd(1)-O(5)       | 143.0(4)  | O(1)-Nd(1)-O(6)      | 114.7(5)  |
| O(1)-Nd(1)-O(7)       | 75.2(4)   | O(1)-Nd(1)-O(8)      | 71.8(4)   |
| O(2)–Nd(1)–O(3)       | 72.9(6)   | O(2)–Nd(1)–O(4)      | 72.7(5)   |
| O(2)-Nd(1)-O(5)       | 121.3(5)  | O(2)–Nd(1)–O(6)      | 139.9(5)  |
| O(2)-Nd(1)-O(7)       | 76.0(5)   | O(2)-Nd(1)-O(8)      | 137.9(4)  |
| O(3)-Nd(1)-O(4)       | 103.1(6)  | O(3)–Nd(1)–O(5)      | 72.7(6)   |
| O(3)–Nd(1)–O(6)       | 143.5(6)  | O(3)–Nd(1)–O(7)      | 145.8(5)  |
| O(3)-Nd(1)-O(8)       | 77.2(5)   | O(4)–Nd(1)–O(5)      | 70.8(5)   |
| O(4)-Nd(1)-O(6)       | 80.3(5)   | O(4)-Nd(1)-O(7)      | 80.3(5)   |
| O(4)-Nd(1)-O(8)       | 144.0(5)  | O(5)–Nd(1)–O(6)      | 74.4(6)   |
| O(5)-Nd(1)-O(7)       | 137.7(5)  | O(5)–Nd(1)–O(8)      | 75.2(5)   |
| O(6)-Nd(1)-O(7)       | 70.7(5)   | O(6)-Nd(1)-O(8)      | 79.5(5)   |
| O(7)–Nd(1)–O(8)       | 119.8(5)  |                      |           |

Symmetry transformations used to generate equivalent atoms: #1 x, -y+3/2, z+1/2; #2 x, -y+3/2,

z-1/2.



**Fig. S1**. Powder X-Ray diffraction pattern (red) of the polycrystalline sample of complex **1** and the simulated pattern (black) base on the single crystal data.



**Fig. S2**. Powder X-Ray diffraction pattern (red) of the polycrystalline sample of complex **4** and the simulated pattern (black) base on the single crystal data.



Fig. S3. IR spectrum of complex 1.



Fig. S4. IR spectrum of complex 2.



Fig. S5. IR spectrum of complex 3.



Fig. S6. IR spectrum of complex 4.



Fig. S7. IR spectrum of complex 5.



Fig. S8. IR spectrum of complex 6.



Fig. S9. Structures of square antiprismatic distorted towards bicapped trigonal prismatic for  $[La(DMSO)_8]^{3+}$  in **1** (left), and slightly distorted square antiprismatic for  $[Gd(DMSO)_8]^{3+}$  in **2** (right).



Fig. S10. Crystal structure of the  $[Gd(DMSO)_8]^{3+}$  complex in **2** with the labeling scheme. The hydrogen atoms are omitted for clarity.



Fig. S11 Views of crystal packing of (a) along the *b* axis of **1**, and (b) along the *a* axis of **2**. The  $PbI_6$  units are shown in green octahedra, and  $AgI_4$  in purple tetrahedra. The hydrogen atoms are omitted for clarity



Fig. S12 Views of crystal packing of **4** (a) along the *a* axis and (b) along the *b* axis. The PbI<sub>6</sub> units are shown in green octahedron. The  $[Ln(DMSO)_8]^{3+}$  complex cations are omitted for clarity



Fig. S13 TG-DTA curves of compounds 1 (top), 2 (middle), and 4 (bottom).