Supporting Information

A series of coordination compounds containing rigid multi-pyridine based ligand: syntheses, structures and

properties†

Hai-Ning Wang, Guo-Gang Shan, Hai-Bin Li, Xin-Long Wang*, Hong-Tao Cao and Zhong-Min Su*

Institute of Functional Material Chemistry, Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China E-mail address: zmsu@nenu.edu.cn; wangxl824@nenu.edu.cn. Tel.: (+86)-431-85099108.

All reagents and solvents employed were commercially available and used as received without further purification. Elemental analyses (C, H, and N) were performed on a Perkin-Elmer 240C elemental analyzer. TG analyses were performed on a Perkin-Elmer TG-7 analyzer heated from 30 to 800 °C in a flow of nitrogen at the heating rate of 10 °C min⁻¹. Powder X-ray diffraction (XRD) patterns of the samples were collected on a Rigaku Dmax 2000. ¹HNMR spectra were measured on Bruker Avance 500 MHz with tetramethylsilane as the internal standard. The solid state UV-vis absorption spectra were taken on a Cary 500 spectrophotometer while the liquid spectra were recorded on a Hitachi U3010 spectrometer. The emission spectra were recorded using a transient spectrofluorimeter (Edinburgh FLS920).

The preparation of samples:

The synthesized samples were collected, washed with water for six times, and dried overnight.

The synthesis of 2,4,5-Tris(4-pyridinyl)-imidazole¹

A mixture of 4 g of 4-pyridinecarbaldehyde and 16 g of ammonium acetate was heated to 120 °C with stirring for 3 h. The reaction mixture was cooled, and then put into the water. The resulted precipitate was filtered off, and washed with water. Yield

2.0 g (50%). ¹H NMR spectrum (500 MHz, DMSO- d_6 , δ [ppm]): 7.5 (d, J = 6.0 Hz, 4H, C₅H₄N), 8.0 (d, J = 6.0 Hz, 2H, C₅H₄N), 8.6 (s, 4H, C₅H₄N), 8.7 (d, J = 6.0 Hz, 2H, C₅H₄N). Elemental Anal. Calcd for C₁₈H₁₃N₅ (%): C, 72.23; H, 4.38; N, 23.39. Found: C, 72.26; H, 4.34; N, 23.36%.

Fig. S1 View of the coordination environments of M centers $(Zn^{II} \text{ for } 2 \text{ (a) and } 3 \text{ (b)}, Cd^{II} \text{ for } 4 \text{ (c) and } 5 \text{ (d)})$. (e) The 1D chain structures. Lattice molecules, coordinated molecules and hydrogen atoms have been omitted for clarity.

Fig. S2 Crystal packing along *b* axis of compound 1.

Fig. S3 Crystal packing along *b* axis of compound 2.

Fig. S4 Crystal packing along *b* axis of compound 3.

Fig. S5 Crystal packing along *b* axis of compound 4.

Fig. S6 Crystal packing along *a* axis of compound 5.

Fig. S7 The intermolecular C-H \cdots π interactions and hydrogen bonds in compound 1.

Fig. S8 The intermolecular C-H $\cdots\pi$ interactions and hydrogen bonds in compound 2.

Fig. S9 The intermolecular hydrogen bonds in compound 3.

Fig. S10 The intermolecular $\pi \cdots \pi$ interaction in compound 4.

Fig. S11 The intermolecular hydrogen bonds in compound 5.

Fig. S12 Power X-ray diffraction patterns of 1A in different states.

Fig. S13 Power X-ray diffraction patterns of 2A in different states.

Fig. S14 Power X-ray diffraction patterns of 3A in different states.

Fig. S15 Power X-ray diffraction patterns of 4A in different states.

Fig. S16 Power X-ray diffraction patterns of 5A in different states.

Fig. S17 Solid-state absorption spectra of compound 1 before and after grinding.

Fig. S18 Solid-state absorption spectra of compound 2 before and after grinding.

Fig. S19 Solid-state absorption spectra of compound 3 before and after grinding.

Fig. S20 Solid-state absorption spectra of compound 4 before and after grinding.

Fig. S21 Solid-state absorption spectra of compound 5 before and after grinding.

Fig. S22 Normalized emission spectra of 1 in the various solvent at room temperature.

Fig. S23 Luminescent photographs of compound **1** in DMF $(3 \times 10^{-5} \text{ mol/L})$ in the presence of different metal ions $(1 \times 10^{-4} \text{ mol/L})$ under 365 nm UV-light (left to right: DMF, Hg²⁺, Zn²⁺, Cu²⁺, Co²⁺, Cd²⁺, Ni²⁺, Cr³⁺).

Fig. S24 The emission spectra of compound 1 (3×10^{-5} mol/L) in the DMF solvent containing different metal ions with concentration 1×10^{-4} mol/L at room temperature.

Fig. S25 (a) The emission spectra of 1 $(3 \times 10^{-5} \text{ mol/L})$ with Cu(NO₃)₂ in DMF. [Cu²⁺]: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, $1 \times 10^{-3} \text{ mol/L}$. (b) Fluorescent intensity curve of a series of Cu(NO₃)₂ DMF solution in the presence of compound 1.

Fig. S26 Absorption of 1 (3×10^{-5} mol/L) in DMF solution with Cu(NO₃)₂. [Cu²⁺]: 0,

Fig. S27 Normalized absorption of compound 1 in DMF $(3 \times 10^{-5} \text{ mol/L})$ in the presence of different metal ions $(1 \times 10^{-4} \text{ mol/L})$.

Fig. S32 TG profile of 5.

(1) Proskurnina, M. V.; Lozinskaya, N. A.; Tkachenko, S. E.; Zefirov, N. S. Russ. J. Org. Chem. 2002, 38, 1200.