Supporting Information

Steric Guided Anomalous Thermal Expansion in a Dimorphic Organic System

Suman Bhattacharya, and Binoy K. Saha*

Department of Chemistry, Pondicherry University, Pondicherry, India

Contents

Experimental: Crystallization and X-Ray crystallography

Figure S1	: ORTEP plots for the data at 50 % probability
Figure S2	: Thermal expansivityindicatrix for the (a) MBDA Form I (triclinic) (b) MBDA Form II (monoclinic)systems.
Figure S3	: Change in $\sqrt{U_{eq}}$ values with temperature for the different carbon atoms of MBDA in Form I.
Table S1	: Hydrogen bond interaction for MBDA (Triclinic) Form I.
Table S2	: Aspherism Index calculations for the systems.
Table S3	: Anisotropy in volumetric thermal expansion for some reported sets of polymorphs.
Table S4	: Crystallographic parameters for the systems
Reference	

Experimental Details:

Crystallization: Both the polymorphic forms were formed concomitantly when a 2:3 stoichiometric mixture of the benzene-1,3,5-tricarboxylic **a**cid (**BTA**) and 4,4'-**M**ethylene-**b**is(2,6-dimethyl**a**niline) (**MBDA**) were crystallized from ethanol. However, the major product of the experiment was a 1:1:1 cocrystal solvate of **BTA**, **MBDA** and ethanol.

X-Ray crystallography:X-ray crystal data were collected on Xcalibur Eos Oxford Diffraction Ltd. with Mo-K_{α} radiation ($\lambda = 0.71073$ Å). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm were applied.^{S1} Structure solution and refinement were performed with SHELXS-97^{S2} and XL^{S3} respectively. Diffraction quality single crystal for both forms I and II polymorphs of **MBDA**, were chosen for the experiments. The crystals were mounted and six data sets were collected for each by cooling the crystals gradually from 298 K to 148 K at 30 K interval. The Form II triclinic crystal could not be cooled below 135 K without avoiding disintegration. The temperature control was performed by cryojet controlling a liquid nitrogen flow. In both the forms, the carbon bonded hydrogen atoms were placed in calculated positions where as the amine hydrogen atoms were isotropically refined. CCDC 948909 – 948920.

Figure S1: ORTEP plots for the data at 50 % probability.

Figure S2: Thermal expansivity indicatrix for the (a) **MBDA** Form I (triclinic) (b) **MBDA** Form II (monoclinic) systems which is a hypothetical surface obtained by joining the tip of the expansion vectors of the system along every direction. The indicatrix has a unit of MK^{-1} .^{S4}

Figure S3: The change in $\sqrt{U_{eq}}$ values with temperature for the different carbon atoms of **MBDA** in Form I. C1-6 and C10-15 (phenyl) represents the carbon atoms forming the aromatic ring of **MBDA**

Table S1:N2–H2A […] N1Hydrogen bond interaction inMBDA Form I (Triclinic)								
	148 178 208 238 268 298							
N—H d D θ	0.89(2) 2.405(19) 3.2265(18) 154(2)	0.90(2) 2.398(19) 3.233(2) 155(2)	0.89(2) 2.418(19) 3.238(2) 152(2)	0.93(2) 2.39(2) 3.242(2) 153(2)	0.92(2) 2.41(2) 3.252(2) 152(2)	0.95(2) 2.40(2) 3.254(3) 150(2)		

Table S2:Aspherism Index (A) calculations for the systems					
$2 \cdot 3\beta_{1/2}$	A=Aspherism Index				
$A = \frac{1}{2} \left(1 - \frac{1}{2} \right)^{2/2}$	$\beta = \alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3$				
$3 \alpha_v^2$	α_i =Coefficient of Expansion (MK ⁻¹)				
MBDA Triclinic Form I	MBDA Monoclinic Form II				
$\beta = \alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3$	$\beta = \alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_1 \alpha_3$				
$= (24x43 + 43x70 + 71x24) = 5722 \text{ MK}^{-2}$	= (-174x174 + 174 x 229 + 229 x (-174))				
	$=-30276 M K^{-2}$				
$\alpha_{\nu}^2 = 21316 \text{ MK}^{-2}$	$\alpha_{v}^{2} = 54756 \text{ MK}^{-2}$				
$A = \frac{2}{3} (1 - \frac{3 \times 5722}{21316})^{1/2}$	$A = \frac{2}{3} (1 - \frac{3 \times (-30276)}{54756})^{1/2}$				
=0.294	=1.087				

Table S3: Anisotropy and volumetric thermal expansion for some reported sets of polymorphs						
	Temp.	Ratio of				
Polymorphic	Range	volumetric				
			coefficients			
α - <i>p</i> -Nitroohenol	- <i>p</i> -Nitroohenol β - <i>p</i> -Nitroohenol ^{S5a}					
$\alpha_{X1} = -1 \text{ MK}^{-1}$	$\alpha_{X1} = 25 \text{ MK}^{-1}$	120 to 198	1.30			
$\alpha_{X2} = 47 \text{ MK}^{-1}$	$\alpha_{X2} = 28 \text{ MK}^{-1}$					
$\alpha_{X3} = 109 \text{ MK}^{-1}$	$\alpha_{X3} = 147 \text{ MK}^{-1}$					
$\alpha_{\rm v} = 156 {\rm MK}^{-1}$	$\alpha_{\rm v} = 203 \ {\rm MK}^{-1}$					
γ -hexanitrohexaazaisowurtzitane	ε -hexanitrohexaazaisowurtzitane ^{S5b}					
$\alpha_{X1} = -6(1) \text{ MK}^{-1}$	$\alpha_{X1} = 20(2) \text{ MK}^{-1}$	100 to 298	1.19			
$\alpha_{X2} = 22(1) \text{ MK}^{-1}$	$\alpha_{X2} = 46(2) \text{ MK}^{-1}$					
$\alpha_{X3} = 84(4) \text{ MK}^{-1}$	$\alpha_{X3} = 54(3) \text{ MK}^{-1}$					
$\alpha_{\rm v} = 103(7) {\rm MK}^{-1}$	$\alpha_{\rm v} = 123(3) {\rm MK}^{-1}$					
CBTA•BPE Form I	CBTA•BPE Form I ^{S5c}					
$\alpha_{X1} = 4(5) \text{ MK}^{-1}$	$\alpha_{X1} = -4(5) \text{ MK}^{-1}$	120 to 298	1.16			
$\alpha_{\rm X2} = 25(4) \rm MK^{-1}$	$\alpha_{X2} = 18(5) \text{ MK}^{-1}$					
$\alpha_{\rm X3} = 147(8) {\rm MK}^{-1}$	$\alpha_{X3} = 136(5) \text{ MK}^{-1}$					
$\alpha_{\rm v} = 183(14) {\rm MK}^{-1}$	$\alpha_{\rm v} = 158(15) {\rm MK}^{-1}$					
(S,S)-3,5-octadiyn-2,7-diol(HT) ^{S5d}	(S,S)-3,5-octadiyn-2,7-diol(LT) ^{S5e}					
$\alpha_{\rm X1} = -205(24) \rm MK^{-1}$	$\alpha_{\rm X1} = -15(8) {\rm MK}^{-1}$	225 to 315	1.34			
$\alpha_{X2} = -77(16) \text{ MK}^{-1}$	$\alpha_{X2} = 22(1) \text{ MK}^{-1}$					
$\alpha_{\rm X3} = 562(49) \rm MK^{-1}$	$\alpha_{X3} = 191(22) \text{ MK}^{-1}$					
$\alpha_{\rm v} = 271(10) {\rm MK}^{-1}$	$\alpha_{\rm v} = 202(13) {\rm MK}^{-1}$					
MBDA Form I	MBDA Form II*					
$\alpha_{X1} = 24(6)$	$\alpha_{X1} = -174 \ (8)$	148 to 298	1.60			
$\alpha_{X2} = 43(4)$	$\alpha_{X2} = 174 (3)$					
$\alpha_{X3} = 70(5)$	$\alpha_{X3} = 229 (3)$					
$\alpha_{\rm v} = 146(16)$						
*Work discussed in this report.						

Table S4: Crystallographic details for the systems at different temperatures									
	MBDA Form I, Triclinic								
Temperature (K)	148	178	208	238	268	298			
Formula	$C_{17} H_{22} N_2$	$C_{17}H_{22}N_2$	$C_{17} H_{22} N_2$	$C_{17} H_{22} N_2$	$C_{17} H_{22} N_2$	$C_{17} H_{22} N_2$			
Mr	254.37	254.37	254.37	254.37	254.37	254.37			
Crystal system	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic			
Space group	PĪ	ΡĪ	ΡĪ	ΡĪ	ΡĪ	PĪ			
a (Å)	8.2122(7)	8.2145(7)	8.2268(7)	8.2384(8)	8.2565(8)	8.2504(9)			
<i>b</i> (Å)	9.0548(5)	9.0601(6)	9.0703(6)	9.0950(6)	9.1147(6)	9.1159(7)			
<i>c</i> (Å)	11.4228(7)	11.4225(8)	11.4426(8)	11.4600(8)	11.4695(8)	11.4622(9)			
<i>α</i> (°)	93.672(5)	93.690(6)	93.691(5)	93.700(6)	93.722(5)	93.800(7)			

β(°)	110.255(7)	110.215(7)	110.218(7)	110.161(8)	110.153(8)	110.087(9)
γ(°)	108.406(6)	108.361(7)	108.335(6)	108.267(7)	108.221(7)	108.151(9)
$V(Å^3)$	741.63(9)	742.67(10)	746.06(9)	750.96(10)	755.11(10)	754.71(12)
Crystal size	0.42 x 0.38 x	0.42 x 0.38 x	0.42 x 0.38 x	0.42 x 0.38x	0.42 x 0.38 x	0.42 x 0.38 x
	0.36	0.36	0.36	0.36	0.36	0.36
ρ (g/cc)	1.139	1.137	1.132	1.125	1.119	1.119
<i>T</i> (K)	148 (2)	178 (2)	208 (2)	238 (2)	268 (2)	298 (2)
Z	2	2	2	2	2	2
F(000)	276	276	276	276	276	276
μ (mm ⁻¹)	0.067	0.067	0.067	0.066	0.066	0.066
Ref.	6918/3356	7177/3399	7125/3372	7096/3406	6901/3386	7173/3453
collected/unique						
Parameters	192	192	192	192	192	192
Final R indices	0.0435	0.0450	0.0461	0.0483	0.0488	0.0516
[I>2 <i>o</i> (I)]						
R indices (all	0.1123	0.1174	0.1221	0.1282	0.1322	0.1420
data)						
Goodness of fit on	1.027	1.052	1.032	1.023	1.031	1.042
F^2						

MBDA Form II, Monoclinic							
Temperature (K)	148	178	208	238	268	298	
Formula	$C_{17}H_{22}N_2$	$C_{17}H_{22}N_2$	$C_{17}H_{22}N_2$	$C_{17}H_{22}N_2$	$C_{17} H_{22} N_2$	$C_{17} H_{22} N_2$	
Mr	254.37	254.37	254.37	254.37	254.37	254.37	
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	
Space group	C2/c	C2/c	C2/c	C2/c	C2/c	C2/c	
a (Å)	17.9670(12)	17.9037(14)	17.8536(16)	17.7463(14)	17.6512(18)	17.5602(17)	
<i>b</i> (Å)	7.9756(6)	8.0121(8)	8.0700(6)	8.0930(7)	8.1468(5)	8.1816(6)	
<i>c</i> (Å)	14.0251(8)	14.0696(9)	14.1329(11)	14.1825(9)	14.2338(10)	14.2820(10)	
<i>α</i> (°)	90.00	90.00	90.00	90.00	90.00	90.00	
β(°)	133.571(4)	133.440(4)	133.271(5)	133.117(4)	132.931(6)	132.800(5)	
)(°)	90.00	90.00	90.00	90.00	90.00	90.00	
$V(\text{\AA}^3)$	1456.11(17)	1465.4(2)	1482.65(19)	1486.85(19)	1498.6(2)	1505.5(2)	
Crystal size	0.44 x 0.34 x	0.44 x 0.34 x					
	0.3	0.3	0.3	0.3	0.3	0.3	
ρ (g/cc)	1.160	1.153	1.140	1.136	1.127	1.122	
<i>T</i> (K)	148 (2)	178 (2)	208 (2)	238 (2)	268 (2)	298 (2)	
Z	4	4	4	4	4	4	
F(000)	552	552	552	552	552	552	

μ (mm ⁻¹)	0.068	0.068	0.067	0.067	0.066	0.066
Ref.	3828/1675	3773/1701	3663/1696	3700/1712	3909/1728	3767/1732
collected/unique						
Parameters	97	97	97	97	97	97
Final R indices	0.0426	0.0497	0.0530	0.0584	0.0544	0.0563
[I>2σ(I)]						
R indices (all	0.1115	0.1451	0.1393	0.1662	0.1361	0.1663
data)						
Goodness of fit on	1.041	1.051	1.035	1.021	1.014	1.019
F^2						

Reference:

S1.CrysAlisPro, Version 1.171.33.66; Oxford Diffraction Ltd.: Abingdon, U.K., 2010.

S2.(a) G. M. Sheldrick, SHELXS-97, Programs for the Solution of Crystal Structures; University of Gottingen: Germany, 1997. (b) G. M. Sheldrick, SHELXL, *Acta Cryst.*, 2008, A64, 112 – 122.

S3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339 – 341.

S4. M. J. Cliffe and A. L. Goodwin, J. Appl. Cryst., 2012, 45, 1321 – 1329

S5.(a) N. B. Bolotina, M. J. Hardie, R. L. Speer Jr and A. A. Pinkerton, *J. Appl. Cryst.*, 2004, **37**, 808 – 814. (b) G. Wójcik and I. Mossakowska, *ActaCryst.*, 2006, **B62**, 143 – 152. (c) S. Bhattacharya and B. K. Saha, *Cryst.Growth Des.*, 2013, **13**, 3299 – 3302.(d) D. Das, T. Jacobs and L. J. Barbour, *Nat. Mater.*, 2010, **9**, 36 – 39. (e) D. Das, T. Jacobs, A. Pietraszko and L. J. Barbour, *Chem. Commun.*, 2011, **47**, 6009 – 6011.