Supporting information of

$(AEDPH_3) \cdot (8-OQH) \cdot (H_2O)$: A yellow supramolecular plaster with ammonia adsorption and ammonia-induced discoloration properties

Di Tian,^a Juan Xiong,^a Xi-chao Liang,^a Jing Deng,^b Liang-jie Yuan,^{*a} Shuo-ping Chen,^{*b}

^a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. *Corresponding author. E-mail: ljyuan@whu.edu.cn. Tel: +86-27-6875-2800

^b Key Lab of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, College of Materials Science and Engineering, Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, Guilin University of technology, Guilin 541004, P. R. China. *Corresponding author. E-mail: chenshuoping_777@163.com. Tel: +86-773-5896290

List:

Figure S-1. The schematic diagram of the color change between neutral 8-OQ molecule (left) and protonated 8-OQH⁺ cation (right)..

Figure S-2. PXRD pattern of the plaster **1** and PXRD pattern of compound **1** which is calculated by the single crystal data.

Figure S-3. The TG (black) and DSC (red) curves of plaster 1.

Figure S-4. IR spectrum of plaster 1.

Figure S-5. ¹H NMR spectrum of 8-OQ extracted from the equimolar mixture of plaster **1** and ammonia.

Figure S-6. ¹³C NMR spectrum of 8-OQ extracted from the equimolar mixture of plaster **1** and ammonia.

Table S-7. Hydrogen bonds of plaster 1 (Å and °).

Figure S-1. The schematic diagram of the color change between neutral 8-OQ molecule (left) and protonated 8-OQH⁺ cation (right).

Figure S-2. PXRD pattern of the plaster **1** and PXRD pattern of compound **1** which is calculated by the single crystal data.

Figure S-3. The TG (black) and DSC (red) curves of plaster **1**. The plaster can be stable up to 120 °C in nitrogen. Then, it decomposes until 250 °C, attributed to the release of water molecules and the decomposition of 8-OQH⁺ ions. The weight loss occurring between 244°C and 800 °C corresponds to the decomposition of AEDPH₃⁻ ions. The final product in 800 °C is probably assumed to be 0.5 (P₂O₃+P₂O₅), and the observed total weight loss (65.67 %) is similar to the calculated value (65.03%).

Figuire S-4. IR spectrum of plaster 1.

Figure S-5. ¹H NMR spectrum of 8-OQ extracted from the equimolar mixture of plaster 1 and ammonia.

Table S-7. Hydrogen bonds of plaster 1 (Å and $^{\circ}$).

Donor-HAcceptor	D(Donor…Acceptor)	<(Donor-H…Acceptor)
O(7)-H(7A)O(2)	2.760(11)	119.6
O(7)-H(7B)O(1)#1	2.790(11)	178.2
O(8)-H(8)O(7)#2	2.410(12)	177.7
O(6)-H(6A)O(5)#3	2.549(7)	127.5
O(3)-H(3A)O(4)#4	2.584(8)	179.7
N(1)-H(1C)O(6)#1	2.854(8)	144.3
N(1)-H(1B)O(4)#5	2.839(7)	139.2
N(1)-H(1A)O(1)#1	2.753(8)	158.5
N(2)-H(2)O(2)	2.662(18)	141(24)
N(2)-H(2)O(8)	2.74(2)	111(21)
Symmetry transformations used to generate equivalent atoms: #1 x,y,z-1; #2 -x+1,-y+1,-z+1; #3		
x,-y+1/2,z+1/2; #4 -x,-y+1,-z+2; #5 -x,-y+1,-z+1.		