Electronic supporting information (ESI)

Two three-dimensional cadmium(II) coordination polymers based on 5-amino-tetrazolate and 1,2,4,5benzenetetracarboxylate: pH value controlled syntheses, crystal structures, and luminescent properties

Di-Chang Zhong,* Wen-Guan Lu,* Ji-Hua Deng

CP 1					
Cd(1)-N(2)	2.210(4)	Cd(1)-O(2)	2.292(3)	Cd(1)-O(3B)	2.387(3)
Cd(1)-O(4A)	2.243(3)	Cd(1)-O(1W)	2.312(4)	Cd(1)-O(1)	2.429(3)
N(2)-Cd(1)-O(4A)	98.05(12)	O(2)-Cd(1)-O(1W)	87.00(16)	N(2)-Cd(1)-O(1)	106.55(11)
N(2)-Cd(1)-O(2)	162.26(11)	N(2)-Cd(1)-O(3B)	87.46(12)	O(4A)-Cd(1)-O(1)	153.96(11)
O(4A)-Cd(1)-O(2)	99.29(11)	O(4A)-Cd(1)-O(3B)	74.98(10)	O(2)-Cd(1)-O(1)	55.75(10)
N(2)-Cd(1)-O(1W)	93.81(17)	O(2)-Cd(1)-O(3B)	93.41(11)	O(1W)-Cd(1)-O(1)	87.32(15)
O(4A)-Cd(1)-O(1W)	99.61(14)	O(1W)-Cd(1)-O(3B)	174.57(14)	O(3B)-Cd(1)-O(1)	97.39(10)
CP 2					
Cd(1)-N(5)	2.250(4)	Cd(2)-O(9)	2.218(4)	Cd(3)-O(9B)	2.243(4)
Cd(1)-O(8A)	2.255(4)	Cd(2)-N(2C)	2.291(4)	Cd(3)-O(9F)	2.294(3)
Cd(1)-O(1)	2.348(3)	Cd(2)-O(6D)	2.296(3)	Cd(3)-O(4B)	2.295(4)
Cd(1)-O(5B)	2.367(4)	Cd(2)-O(1W)	2.357(4)	Cd(3)-O(2W)	2.319(4)
Cd(1)-O(7B)	2.400(4)	Cd(2)-O(1)	2.420(3)	Cd(3)-O(3G)	2.345(4)
Cd(1)-O(2)	2.490(3)	Cd(2)-O(3E)	2.454(4)	Cd(3)-N(3)	2.392(5)
N(5)-Cd(1)-O(8A)	108.58(15)	O(9)-Cd(2)-N(2C)	94.25(15)	O(9B)-Cd(3)-O(9F)	82.37(14)
N(5)-Cd(1)-O(1)	128.98(15)	O(9)-Cd(2)-O(6D)	97.22(14)	O(9B)-Cd(3)-O(4B)	100.78(13)
O(8A)-Cd(1)-O(1)	95.47(13)	N(2C)-Cd(2)-O(6D)	159.60(14)	O(9F)-Cd(3)-O(4B)	166.41(15)
N(5)-Cd(1)-O(5B)	87.81(14)	O(9)-Cd(2)-O(1W)	175.30(13)	O(9B)-Cd(3)-O(2W)	172.50(16)
O(8A)-Cd(1)-O(5B)	160.28(12)	N(2C)-Cd(2)-O(1W)	86.95(15)	O(9F)-Cd(3)-O(2W)	91.73(15)
O(1)-Cd(1)-O(5B)	81.73(12)	O(6D)-Cd(2)-O(1W)	80.33(13)	O(4B)-Cd(3)-O(2W)	86.03(15)
N(5)-Cd(1)-O(7B)	99.39(14)	O(9)-Cd(2)-O(1)	93.00(13)	O(9B)-Cd(3)-O(3G)	95.90(13)
O(8A)-Cd(1)-O(7B)	90.26(13)	N(2C)-Cd(2)-O(1)	91.04(13)	O(9F)-Cd(3)-O(3G)	73.71(13)
O(1)-Cd(1)-O(7B)	125.46(12)	O(6D)-Cd(2)-O(1)	71.61(12)	O(4B)-Cd(3)-O(3G)	92.77(13)
O(5B)-Cd(1)-O(7B)	75.93(13)	O(1W)-Cd(2)-O(1)	82.43(13)	O(2W)-Cd(3)-O(3G)	86.83(16)
N(5)-Cd(1)-O(2)	166.08(14)	O(9)-Cd(2)-O(3E)	72.91(13)	O(9B)-Cd(3)-N(3)	89.25(14)
O(8A)-Cd(1)-O(2)	83.30(12)	N(2C)-Cd(2)-O(3E)	82.47(13)	O(9F)6-Cd(3)-N(3)	100.86(14)
O(1)-Cd(1)-O(2)	54.39(12)	O(6D)-Cd(2)-O(3E)	117.03(11)	O(4B)-Cd(3)-N(3)	92.43(14)
O(5B)-Cd(1)-O(2)	79.22(12)	O(1W)-Cd(2)-O(3E)	111.77(13)	O(2W)-Cd(3)-N(3)	87.31(17)
O(7B)-Cd(1)-O(2)	72.72(11)	O(1)-Cd(2)-O(3E)	163.89(13)	O(3G)-Cd(3)-N(3)	171.88(14)

Table S1. Selected Bond Lengths (Å) and Angles (°) for 1 and 2^a

^{*a*} Symmetry transformations used to generate equivalent atoms: A -*x*, -y+1, -z; B -*x*, *y*, -z+1/2 for 1.

A -*x*+1, -*y*, -*z*; B *x*, *y*+1, *z*; C *x*, *y*-1, *z*; D *x*-1, *y*+1, *z*; E *x*-1, *y*, *z*; F -*x*, -*y*+1, -*z*+1; G -*x*+1, -*y*+1, -*z*+1 for **2**.

Fig. S1. IR spectra of 1 and 2

Fig. S2 The coordination polyhedra of Cd(II) ions in 1 (a) and 2 (b, c, and d).

Fig. S3. The powder X-ray diffraction patterns for 1 and 2, the bulk of samples were synthesized from (a) $Cd(NO_3)_2$, (b) $CdCl_2$, and (c) $Cd(Ac)_2$ (the simulated PXRD patterns are generated from the corresponding single-crystal diffraction data).